Binary optimal linear rate 1/2 codes

被引:11
|
作者
Gulliver, TA
Östergård, PRJ
机构
[1] Univ Victoria, Dept Elect & Comp Engn, STN, CSC, Victoria, BC V8W 3P6, Canada
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, Helsinki 02015, Finland
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
optimal binary linear codes; formally self-dual codes; code classification;
D O I
10.1016/j.disc.2003.10.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we complete the classification of binary optimal linear [n, n/2] codes up to length 28. We have determined that there are 1535 inequivalent [14,7,4] codes, 1682 inequivalent [20,10,6] codes, and 3 inequivalent [26,13,7] codes. In addition. we show that the smallest length for which an optimal rate 1/2 code has a trivial automorphism group is 14. Double circulant codes which attain the highest known minimum distance are given for lengths up to 64. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 50 条
  • [41] Rank-2-optimal binary spreading codes
    Karystinos, George N.
    Pados, Dimitris A.
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 1534 - 1539
  • [42] Optimal binary LCD codes
    Stefka Bouyuklieva
    Designs, Codes and Cryptography, 2021, 89 : 2445 - 2461
  • [43] Locality of optimal binary codes
    Fu, Qiang
    Li, Ruihu
    Guo, Luobin
    Lv, Liangdong
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 371 - 394
  • [44] Optimal binary LCD codes
    Bouyuklieva, Stefka
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2445 - 2461
  • [45] Linear Binary Completely Regular Codes with Distance 2
    Vasil'eva, Anastasia
    2008 IEEE REGION 8 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNOLOGIES IN ELECTRICAL AND ELECTRONICS ENGINEERING: SIBIRCON 2008, PROCEEDINGS, 2008, : 12 - 15
  • [46] ON 2 PROBABILISTIC DECODING ALGORITHMS FOR BINARY LINEAR CODES
    ZIVKOVIC, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1707 - 1716
  • [47] New binary linear codes
    Gulliver, TA
    Östergård, PRJ
    ARS COMBINATORIA, 2000, 56 : 105 - 112
  • [48] Varieties of binary linear codes
    R. Quackenbush
    algebra universalis, 1999, 42 : 141 - 149
  • [49] On the Intersection of Binary Linear Codes
    Liao Dajian
    Liu Zihui
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 29 (03) : 814 - 824
  • [50] Varieties of binary linear codes
    Quackenbush, R
    ALGEBRA UNIVERSALIS, 1999, 42 (1-2) : 141 - 149