Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network

被引:10
|
作者
Pan, Liangrui [1 ]
Pipitsunthonsan, Pronthep [1 ]
Daengngam, Chalongrat [2 ]
Channumsin, Sittiporn [3 ]
Sreesawet, Suwat [3 ]
Chongcheawchamnan, Mitchai [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Hat Yai 90110, Thailand
[2] Prince Songkla Univ, Fac Sci, Hat Yai 90110, Thailand
[3] Geoinformat & Space Technol Dev Agcy GISTDA, Chon Buri 20230, Thailand
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Raman spectrum; baseline noise; wavelet transform; deep convolution neural network; accuracy; robustness; DECISION TREE; CLASSIFICATION; SPECTROSCOPY; RECOGNITION; DATABASE;
D O I
10.1109/ACCESS.2020.3035884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because it is relatively difficult in practice to classify the Raman spectrum under baseline noise and additive white Gaussian noise environments, this paper proposes a new framework based on a wavelet transform and deep neural network for identification of noisy Raman spectra. The framework consists of two main engines. Wavelet transform is proposed as the framework front end for transforming the 1-D noise Raman spectrum to two-dimensional data. The two-dimensional data are fed to the framework back end, which is a classifier. The optimum classifier is chosen by implementing several traditional machine learning (ML) and deep learning (DL) algorithms, and we investigate their classification accuracy and robustness performances. The four chosen MLs are naive Bayes (NB), a support vector machine (SVM), a random forest (RF) and a k-nearest neighbor (KNN), and a deep convolution neural network (DCNN) was chosen as a DL classifier. Noise-free, Gaussian noise, baseline noise, and mixed-noise Raman spectra were applied to train and validate the ML and DCNN models. The optimum back-end classifier was obtained by testing the ML and DCNN models with several noisy Raman spectra (10-30 dB noise power). Based on the simulation, the accuracy of the DCNN classifier is 9% higher than that of the NB classifier, 3.5% higher than the RF classifier, 1% higher than the KNN classifier, and 0.5% higher than the SVM classifier. In terms of robustness to mixed noise scenarios, the framework with the DCNN back end showed superior performance compared with the other ML back ends. The DCNN back end achieved 90% accuracy at 3 dB SNR, while the NB, SVM, RF, and K-NN back ends required 27 dB, 22 dB, 27 dB, and 23 dB SNR, respectively. In addition, in the low-noise test dataset, the F-measure score of the DCNN back end exceeded 99.1%, and the F-measure scores of the other ML engines were below 98.7%.
引用
收藏
页码:202716 / 202727
页数:12
相关论文
共 50 条
  • [31] A Novel Pre-Processing Algorithm Based on the Wavelet Transform for Raman Spectrum
    Xi, Yang
    Li, Yuee
    Duan, Zhizhen
    Lu, Yang
    APPLIED SPECTROSCOPY, 2018, 72 (12) : 1752 - 1763
  • [32] Research on scraper conveyor load prediction method based on wavelet transform and BP neural network
    Dan Zhang
    Jiafeng Qin
    Weidong Wu
    Yongtao Zhu
    Weijie Guo
    Scientific Reports, 15 (1)
  • [33] A novel wavelet transform aided neural network based transmission line fault analysis method
    Bhowmik, P. S.
    Purkait, P.
    Bhattacharya, K.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2009, 31 (05) : 213 - 219
  • [34] A method of short-term wind power forecast based on wavelet transform and neural network
    Wang S.
    Su J.
    Du S.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (SUPPL. 2): : 125 - 129
  • [35] Classifying ECoG Based Mental Tasks Using Wavelet Transform Features
    Aydemir, Onder
    Kayikcioglu, Temel
    TSP 2010: 33RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, 2010, : 103 - 107
  • [36] An improved method based on a new wavelet transform for overlapped peak detection on spectrum obtained by portable Raman system
    Liu, Minghui
    Dong, Zuoren
    Xin, Guofeng
    Sun, Yanguang
    Qu, Ronghui
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 182 : 1 - 8
  • [37] Classification of breast cancer with deep learning from noisy images using wavelet transform
    Cengiz, Enes
    Kelek, Muhammed Mustafa
    Oguz, Yuksel
    Yilmaz, Cemal
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2022, 67 (02): : 143 - 150
  • [38] DSP-based arrhythmia classification using wavelet transform and probabilistic neural network
    Antonio Gutierrez-Gnecchi, Jose
    Morfin-Magana, Rodrigo
    Lorias-Espinoza, Daniel
    del Carmen Tellez-Anguiano, Adriana
    Reyes-Archundia, Enrique
    Mendez-Patino, Arturo
    Castaneda-Miranda, Rodrigo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 32 : 44 - 56
  • [39] An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on Elman Neural Network
    Yu, Chuanjin
    Li, Yongle
    Zhang, Mingjin
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 895 - 904
  • [40] Wavelet transform based deep residual neural network and ReLU based Extreme Learning Machine for skin lesion classification
    Alenezi, Fayadh
    Armghan, Ammar
    Polat, Kemal
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213