Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network

被引:10
|
作者
Pan, Liangrui [1 ]
Pipitsunthonsan, Pronthep [1 ]
Daengngam, Chalongrat [2 ]
Channumsin, Sittiporn [3 ]
Sreesawet, Suwat [3 ]
Chongcheawchamnan, Mitchai [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Hat Yai 90110, Thailand
[2] Prince Songkla Univ, Fac Sci, Hat Yai 90110, Thailand
[3] Geoinformat & Space Technol Dev Agcy GISTDA, Chon Buri 20230, Thailand
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Raman spectrum; baseline noise; wavelet transform; deep convolution neural network; accuracy; robustness; DECISION TREE; CLASSIFICATION; SPECTROSCOPY; RECOGNITION; DATABASE;
D O I
10.1109/ACCESS.2020.3035884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because it is relatively difficult in practice to classify the Raman spectrum under baseline noise and additive white Gaussian noise environments, this paper proposes a new framework based on a wavelet transform and deep neural network for identification of noisy Raman spectra. The framework consists of two main engines. Wavelet transform is proposed as the framework front end for transforming the 1-D noise Raman spectrum to two-dimensional data. The two-dimensional data are fed to the framework back end, which is a classifier. The optimum classifier is chosen by implementing several traditional machine learning (ML) and deep learning (DL) algorithms, and we investigate their classification accuracy and robustness performances. The four chosen MLs are naive Bayes (NB), a support vector machine (SVM), a random forest (RF) and a k-nearest neighbor (KNN), and a deep convolution neural network (DCNN) was chosen as a DL classifier. Noise-free, Gaussian noise, baseline noise, and mixed-noise Raman spectra were applied to train and validate the ML and DCNN models. The optimum back-end classifier was obtained by testing the ML and DCNN models with several noisy Raman spectra (10-30 dB noise power). Based on the simulation, the accuracy of the DCNN classifier is 9% higher than that of the NB classifier, 3.5% higher than the RF classifier, 1% higher than the KNN classifier, and 0.5% higher than the SVM classifier. In terms of robustness to mixed noise scenarios, the framework with the DCNN back end showed superior performance compared with the other ML back ends. The DCNN back end achieved 90% accuracy at 3 dB SNR, while the NB, SVM, RF, and K-NN back ends required 27 dB, 22 dB, 27 dB, and 23 dB SNR, respectively. In addition, in the low-noise test dataset, the F-measure score of the DCNN back end exceeded 99.1%, and the F-measure scores of the other ML engines were below 98.7%.
引用
收藏
页码:202716 / 202727
页数:12
相关论文
共 50 条
  • [21] Digital Watermarking Algorithm Based on Wavelet Transform and Neural Network
    WANG Zhenfei~ 1
    2. College of Information Engineering
    WuhanUniversityJournalofNaturalSciences, 2006, (06) : 1667 - 1670
  • [22] Identification of Ferroresonance based on wavelet transform and artificial neural network
    Mokryani, G.
    Haghifam, M. -R.
    Esmaeilpoor, J.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2009, 19 (03): : 474 - 486
  • [23] EEG signal recognition based on wavelet transform and neural network
    Qin, Xue-Bin
    Zhang, Yi-Zhe
    Huang, Meng-Tao
    Wang, Mei
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 523 - 526
  • [24] Iris recognition based on wavelet neural network transform system
    Wang, Anna
    Chen, Yu
    Zhang, Xinhua
    Wu, Jie
    IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 115 - +
  • [25] Study on pattern recognition of Raman spectrum based on Fuzzy Neural Network
    Zheng, Xiangxiang
    Lv, Xiaoyi
    Mo, Jiaqing
    AOPC 2017: OPTICAL SPECTROSCOPY AND IMAGING, 2017, 10461
  • [26] Context-Aware Hand Pose Classifying Algorithm Based on Combination of Viola-Jones Method, Wavelet Transform, PCA and Neural Networks
    Ngoc Hoang Phan
    Thi Thu Trang Bui
    CONTEXT-AWARE SYSTEMS AND APPLICATIONS (ICCASA 2016), 2017, 193 : 42 - 51
  • [27] Research on Power Load Forecasting Using Deep Neural Network and Wavelet Transform
    Tan, Xiangyu
    Ao, Gang
    Qian, Guochao
    Zhou, Fangrong
    Power, Wenyun Li
    Liu, Chuanbin
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (02)
  • [28] A deep hybrid neural network for single image dehazing via wavelet transform
    Dharejo, Fayaz Ali
    Zhou, Yuanchun
    Deeba, Farah
    Jatoi, Munsif Ali
    Khan, Muhammad Ashfaq
    Mallah, Ghulam Ali
    Ghaffar, Abdul
    Chhattal, Muhammad
    Du, Yi
    Wang, Xuezhi
    OPTIK, 2021, 231
  • [29] Bearing defect size assessment using wavelet transform based Deep Convolutional Neural Network (DCNN)
    Kumar, Anil
    Zhou, Yuqing
    Gandhi, C. P.
    Kumar, Rajesh
    Xiang, Jiawei
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (02) : 999 - 1012
  • [30] Image Retrieval Based on Wavelet Transform and Neural Network Classification
    Gonzalez-Garcia, A. C.
    Sossa-Azuela, J. H.
    Felipe-Riveron, E. M.
    Pogrebnyak, O.
    COMPUTACION Y SISTEMAS, 2007, 11 (02): : 143 - 156