Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease

被引:35
作者
Kauppi, Karolina [1 ,2 ]
Fan, Chun Chieh [1 ,3 ]
McEvoy, Linda K. [1 ]
Holland, Dominic [4 ]
Tan, Chin Hong [5 ]
Chen, Chi-Hua [1 ]
Andreassen, Ole A. [6 ,7 ]
Desikan, Rahul S. [5 ]
Dale, Anders M. [1 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Radiol, La Jolla, CA 92093 USA
[2] Univ Umea, Dept Radiat Sci, Umea, Sweden
[3] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[5] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, Neuroradiol Sect, San Francisco, CA 94143 USA
[6] Univ Oslo, Oslo Univ Hosp, NORMENT, Inst Clin Med,Div Mental Hlth & Addict, Oslo, Norway
[7] Oslo Univ Hosp, Div Mental Hlth & Addict, Oslo, Norway
基金
美国国家卫生研究院; 加拿大健康研究院; 瑞典研究理事会;
关键词
pHs; MCI; AD prediction; MRI; genetics; CLASSIFICATION; DEMENTIA; MCI;
D O I
10.3389/fnins.2018.00260
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Improved prediction of progression to Alzheimer's Disease (AD) among older individuals with mild cognitive impairment (MCI) is of high clinical and societal importance. We recently developed a polygenic hazard score (PHS) that predicted age of AD onset above and beyond APOE. Here, we used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS for predicting AD development in older adults with MCI. We examined the predictive value of PHS alone and in combination with baseline structural magnetic resonance imaging (MRI) data on performance on the Mini-Mental State Exam (MMSE). In survival analyses, PHS significantly predicted time to progression from MCI to AD over 120 months (p = 1.07e-5), and PHS was significantly more predictive than APOE alone (p = 0.015). Combining PHS with baseline brain atrophy score and/or MMSE score significantly improved prediction compared to models without PHS (three-factor model p = 4.28e-17). Prediction model accuracies, sensitivities and area under the curve were also improved by including PHS in the model, compared to only using atrophy score and MMSE. Further, using linear mixed-effect modeling, PHS improved the prediction of change in the Clinical Dementia Rating-Sum of Boxes (CDR-SB) score and MMSE over 36 months in patients with MCI at baseline, beyond both APOE and baseline levels of brain atrophy. These results illustrate the potential clinical utility of PHS for assessment of risk for AD progression among individuals with MCI both alone, or in conjunction with clinical measures of prodromal disease including measures of cognitive function and regional brain atrophy.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Prediction of Alzheimer's Disease and Mild Cognitive Impairment Using Cortical Morphological Patterns [J].
Wee, Chong-Yaw ;
Yap, Pew-Thian ;
Shen, Dinggang .
HUMAN BRAIN MAPPING, 2013, 34 (12) :3411-3425
[42]   Weight Loss Predicts Progression of Mild Cognitive Impairment to Alzheimer's Disease [J].
Cova, Ilaria ;
Clerici, Francesca ;
Rossi, Annalia ;
Cucumo, Valentina ;
Ghiretti, Roberta ;
Maggiore, Laura ;
Pomati, Simone ;
Galimberti, Daniela ;
Scarpini, Elio ;
Mariani, Claudio ;
Caracciolo, Barbara .
PLOS ONE, 2016, 11 (03)
[43]   Generalizability of the Disease State Index Prediction Model for Identifying Patients Progressing from Mild Cognitive Impairment to Alzheimer's Disease [J].
Hall, Anette ;
Munoz-Ruiz, Miguel ;
Mattila, Jussi ;
Koikkalainen, Juha ;
Tsolaki, Magda ;
Mecocci, Patrizia ;
Kloszewska, Iwona ;
Vellas, Bruno ;
Lovestone, Simon ;
Visser, Pieter Jelle ;
Lotjonen, Jyrki ;
Soininen, Hilkka .
JOURNAL OF ALZHEIMERS DISEASE, 2015, 44 (01) :79-92
[44]   Multimodal classification of Alzheimer's disease and mild cognitive impairment [J].
Zhang, Daoqiang ;
Wang, Yaping ;
Zhou, Luping ;
Yuan, Hong ;
Shen, Dinggang .
NEUROIMAGE, 2011, 55 (03) :856-867
[45]   Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning [J].
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Garcia-Lorenzo, Daniel ;
Fonov, Vladimir ;
Pruessner, Jens C. ;
Collins, D. Louis .
NEUROIMAGE, 2013, 65 :511-521
[46]   Neuropsychiatric Symptoms and Risk of Progression to Alzheimer's Disease Among Mild Cognitive Impairment Subjects [J].
Dietlin, Simon ;
Soto, Maria ;
Kiyasova, Vera ;
Pueyo, Maria ;
de Mauleon, Adelaide ;
Delrieu, Julien ;
Ousset, Pierre Jean ;
Vellas, Bruno .
JOURNAL OF ALZHEIMERS DISEASE, 2019, 70 (01) :25-34
[47]   A six-month longitudinal evaluation significantly improves accuracy of predicting incipient Alzheimer's disease in mild cognitive impairment [J].
Mubeen, Asim M. ;
Asaei, Ali ;
Bachman, Alvin H. ;
Sidtis, John J. ;
Ardekani, Babak A. .
JOURNAL OF NEURORADIOLOGY, 2017, 44 (06) :381-387
[48]   Inclusion of Neuropsychological Scores in Atrophy Models Improves Diagnostic Classification of Alzheimer's Disease and Mild Cognitive Impairment [J].
Goryawala, Mohammed ;
Zhou, Qi ;
Barker, Warren ;
Loewenstein, David A. ;
Duara, Ranjan ;
Adjouadi, Andmalek .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
[49]   Prognosis of Alzheimer's Disease Progression from Mild Cognitive Impairment Using Apolipoprotein-E Genotype [J].
Rohini, M. ;
Surendran, D. ;
Manoj, S. Oswalt .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (02) :1445-1457
[50]   Risk estimation before progression to mild cognitive impairment and Alzheimer's disease: an AD resemblance atrophy index [J].
Zhao, Lei ;
Luo, Yishan ;
Lew, Darson ;
Liu, Wenyan ;
Au, Lisa ;
Mok, Vincent ;
Shi, Lin .
AGING-US, 2019, 11 (16) :6217-6236