A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease

被引:104
作者
Tong, Tong [1 ]
Gao, Qinquan [2 ]
Guerrero, Ricardo [1 ]
Ledig, Christian [1 ]
Chen, Liang [1 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[2] Fuzhou Univ, Dept Internet Things, Fujian Prov Key Lab Med Instrument & Pharmaceut T, Fuzhou 350108, Peoples R China
关键词
Alzheimer's disease (AD); biomarker; machine learning; prediction of mild cognitive impairment (MCI) conversion; structuralmagnetic resonance (MR) imaging; AD DIAGNOSIS; MCI PATIENTS; BASE-LINE; MRI; CLASSIFICATION; SEGMENTATION; SELECTION; PATTERNS; ATROPHY; MODEL;
D O I
10.1109/TBME.2016.2549363
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. Methods: We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide amore accurate prediction of MCI-to-AD conversion. Results: Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. Conclusion: The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. Signifi-cance: The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 61 条
  • [1] Adeli-Mosabbeb E., 2015, Advances in Neural Information Processing Systems, P658
  • [2] Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
    Bron, Esther E.
    Smits, Marion
    van der Flier, Wiesje M.
    Vrenken, Hugo
    Barkhof, Frederik
    Scheltens, Philip
    Papma, Janne M.
    Steketee, Rebecca M. E.
    Orellana, Carolina Mendez
    Meijboom, Rozanna
    Pinto, Madalena
    Meireles, Joana R.
    Garrett, Carolina
    Bastos-Leite, Antonio J.
    Abdulkadir, Ahmed
    Ronneberger, Olaf
    Amoroso, Nicola
    Bellotti, Roberto
    Cardenas-Pena, David
    Alvarez-Meza, Andres M.
    Dolph, Chester V.
    Iftekharuddin, Khan M.
    Eskildsen, Simon F.
    Coupe, Pierrick
    Fonov, Vladimir S.
    Franke, Katja
    Gaser, Christian
    Ledig, Christian
    Guerrero, Ricardo
    Tong, Tong
    Gray, Katherine R.
    Moradi, Elaheh
    Tohka, Jussi
    Routier, Alexandre
    Durrleman, Stanley
    Sarica, Alessia
    Di Fatta, Giuseppe
    Sensi, Francesco
    Chincarini, Andrea
    Smith, Garry M.
    Stoyanov, Zhivko V.
    Sorensen, Lauge
    Nielsen, Mads
    Tangaro, Sabina
    Inglese, Paolo
    Wachinger, Christian
    Reuter, Martin
    van Swieten, John C.
    Niessen, Wiro J.
    Klein, Stefan
    [J]. NEUROIMAGE, 2015, 111 : 562 - 579
  • [3] Alzheimer's Disease Risk Assessment Using Large-Scale Machine Learning Methods
    Casanova, Ramon
    Hsu, Fang-Chi
    Sink, Kaycee M.
    Rapp, Stephen R.
    Williamson, Jeff D.
    Resnick, Susan M.
    Espeland, Mark A.
    [J]. PLOS ONE, 2013, 8 (11):
  • [4] Cheng B, 2012, LECT NOTES COMPUT SC, V7510, P82, DOI 10.1007/978-3-642-33415-3_11
  • [5] Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
    Chincarini, Andrea
    Bosco, Paolo
    Calvini, Piero
    Gemme, Gianluca
    Esposito, Mario
    Olivieri, Chiara
    Rei, Luca
    Squarcia, Sandro
    Rodriguez, Guido
    Bellotti, Roberto
    Cerello, Piergiorgio
    De Mitri, Ivan
    Retico, Alessandra
    Nobili, Flavio
    [J]. NEUROIMAGE, 2011, 58 (02) : 469 - 480
  • [6] Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
    Cho, Youngsang
    Seong, Joon-Kyung
    Jeong, Yong
    Shin, Sung Yong
    [J]. NEUROIMAGE, 2012, 59 (03) : 2217 - 2230
  • [7] Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI
    Chupin, Marie
    Gerardin, Emilie
    Cuingnet, Remi
    Boutet, Claire
    Lemieux, Louis
    Lehericy, Stephane
    Benali, Habib
    Garnero, Line
    Colliot, Olivier
    [J]. HIPPOCAMPUS, 2009, 19 (06) : 579 - 587
  • [8] Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
    Coupe, Pierrick
    Eskildsen, Simon F.
    Manjon, Jose V.
    Fonov, Vladimir S.
    Pruessner, Jens C.
    Allard, Michele
    Collins, D. Louis
    [J]. NEUROIMAGE-CLINICAL, 2012, 1 (01) : 141 - 152
  • [9] Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    Cuingnet, Remi
    Gerardin, Emilie
    Tessieras, Jerome
    Auzias, Guillaume
    Lehericy, Stephane
    Habert, Marie-Odile
    Chupin, Marie
    Benali, Habib
    Colliot, Olivier
    [J]. NEUROIMAGE, 2011, 56 (02) : 766 - 781
  • [10] Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    Davatzikos, Christos
    Bhatt, Priyanka
    Shaw, Leslie M.
    Batmanghelich, Kayhan N.
    Trojanowski, John Q.
    [J]. NEUROBIOLOGY OF AGING, 2011, 32 (12) : 2322.e19 - 2322.e27