A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease

被引:106
作者
Tong, Tong [1 ]
Gao, Qinquan [2 ]
Guerrero, Ricardo [1 ]
Ledig, Christian [1 ]
Chen, Liang [1 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[2] Fuzhou Univ, Dept Internet Things, Fujian Prov Key Lab Med Instrument & Pharmaceut T, Fuzhou 350108, Peoples R China
关键词
Alzheimer's disease (AD); biomarker; machine learning; prediction of mild cognitive impairment (MCI) conversion; structuralmagnetic resonance (MR) imaging; AD DIAGNOSIS; MCI PATIENTS; BASE-LINE; MRI; CLASSIFICATION; SEGMENTATION; SELECTION; PATTERNS; ATROPHY; MODEL;
D O I
10.1109/TBME.2016.2549363
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. Methods: We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide amore accurate prediction of MCI-to-AD conversion. Results: Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. Conclusion: The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. Signifi-cance: The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 61 条
[1]  
Adeli-Mosabbeb E., 2015, Advances in Neural Information Processing Systems, P658
[2]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[3]   Alzheimer's Disease Risk Assessment Using Large-Scale Machine Learning Methods [J].
Casanova, Ramon ;
Hsu, Fang-Chi ;
Sink, Kaycee M. ;
Rapp, Stephen R. ;
Williamson, Jeff D. ;
Resnick, Susan M. ;
Espeland, Mark A. .
PLOS ONE, 2013, 8 (11)
[4]  
Cheng B, 2012, LECT NOTES COMPUT SC, V7510, P82, DOI 10.1007/978-3-642-33415-3_11
[5]   Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease [J].
Chincarini, Andrea ;
Bosco, Paolo ;
Calvini, Piero ;
Gemme, Gianluca ;
Esposito, Mario ;
Olivieri, Chiara ;
Rei, Luca ;
Squarcia, Sandro ;
Rodriguez, Guido ;
Bellotti, Roberto ;
Cerello, Piergiorgio ;
De Mitri, Ivan ;
Retico, Alessandra ;
Nobili, Flavio .
NEUROIMAGE, 2011, 58 (02) :469-480
[6]   Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data [J].
Cho, Youngsang ;
Seong, Joon-Kyung ;
Jeong, Yong ;
Shin, Sung Yong .
NEUROIMAGE, 2012, 59 (03) :2217-2230
[7]   Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI [J].
Chupin, Marie ;
Gerardin, Emilie ;
Cuingnet, Remi ;
Boutet, Claire ;
Lemieux, Louis ;
Lehericy, Stephane ;
Benali, Habib ;
Garnero, Line ;
Colliot, Olivier .
HIPPOCAMPUS, 2009, 19 (06) :579-587
[8]   Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease [J].
Coupe, Pierrick ;
Eskildsen, Simon F. ;
Manjon, Jose V. ;
Fonov, Vladimir S. ;
Pruessner, Jens C. ;
Allard, Michele ;
Collins, D. Louis .
NEUROIMAGE-CLINICAL, 2012, 1 (01) :141-152
[9]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[10]   Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification [J].
Davatzikos, Christos ;
Bhatt, Priyanka ;
Shaw, Leslie M. ;
Batmanghelich, Kayhan N. ;
Trojanowski, John Q. .
NEUROBIOLOGY OF AGING, 2011, 32 (12) :2322.e19-2322.e27