CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY

被引:60
|
作者
Takahashi, Y. D. [1 ]
Ade, P. A. R. [2 ]
Barkats, D. [3 ,4 ]
Battle, J. O. [5 ]
Bierman, E. M. [6 ]
Bock, J. J. [3 ,5 ]
Chiang, H. C. [3 ,7 ]
Dowell, C. D. [5 ]
Duband, L. [8 ]
Hivon, E. F. [9 ]
Holzapfel, W. L. [1 ]
Hristov, V. V. [3 ]
Jones, W. C. [3 ,7 ]
Keating, B. G. [6 ]
Kovac, J. M. [3 ]
Kuo, C. L. [10 ]
Lange, A. E. [3 ]
Leitch, E. M. [11 ]
Mason, P. V. [3 ]
Matsumura, T. [3 ]
Nguyen, H. T. [5 ]
Ponthieu, N. [12 ]
Pryke, C. [11 ]
Richter, S. [3 ]
Rocha, G. [3 ,5 ]
Yoon, K. W. [13 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Wales Coll Cardiff, Cardiff CF24 3YB, S Glam, Wales
[3] CALTECH, Pasadena, CA 91125 USA
[4] Natl Radio Astron Observ, Santiago, Chile
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[6] Univ Calif San Diego, La Jolla, CA 92093 USA
[7] Princeton Univ, Princeton, NJ 08544 USA
[8] Commissariat Energie Atom, Grenoble, France
[9] Inst Astrophys, F-75014 Paris, France
[10] Stanford Univ, Palo Alto, CA 94305 USA
[11] Univ Chicago, Chicago, IL 60637 USA
[12] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France
[13] Natl Inst Stand & Technol, Boulder, CO 80305 USA
关键词
cosmic background radiation; cosmology: observations; gravitational waves; inflation; instrumentation: polarimeters; telescopes; POLARIZATION POWER SPECTRA; RECEIVER; QUAD;
D O I
10.1088/0004-637X/711/2/1141
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Background Imaging of Cosmic Extragalactic Polarization (Bicep) experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, Bicep has completed three years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the Bicep experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit Bicep's two-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 50 条
  • [31] MARVEL, a four-telescope array for high-precision radial-velocity monitoring
    Raskin, G.
    Schwab, C.
    Vandenbussche, B.
    De Ridder, J.
    Lanthermann, C.
    Perez Padilla, J.
    Tkachenko, A.
    Sana, H.
    Royer, P.
    Prins, S.
    Decin, L.
    Defrere, D.
    Pember, J.
    Atkinson, D.
    Glasse, A.
    Pollacco, D.
    Tinetti, G.
    Guedel, M.
    Stuermer, J.
    Ribas, I
    Brandeker, A.
    Buchhave, L.
    Halverson, S.
    Avila, G.
    Morren, J.
    Van Winckel, H.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VIII, 2020, 11447
  • [32] A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE
    Baxter, E. J.
    Keisler, R.
    Dodelson, S.
    Aird, K. A.
    Allen, S. W.
    Ashby, M. L. N.
    Bautz, M.
    Bayliss, M.
    Benson, B. A.
    Bleem, L. E.
    Bocquet, S.
    Brodwin, M.
    Carlstrom, J. E.
    Chang, C. L.
    Chiu, I.
    Cho, H-M.
    Clocchiatti, A.
    Crawford, T. M.
    Crites, A. T.
    Desai, S.
    Dietrich, J. P.
    de Haan, T.
    Dobbs, M. A.
    Foley, R. J.
    Forman, W. R.
    George, E. M.
    Gladders, M. D.
    Gonzalez, A. H.
    Halverson, N. W.
    Harrington, N. L.
    Hennig, C.
    Hoekstra, H.
    Holder, G. P.
    Holzapfel, W. L.
    Hou, Z.
    Hrubes, J. D.
    Jones, C.
    Knox, L.
    Lee, A. T.
    Leitch, E. M.
    Liu, J.
    Lueker, M.
    Luong-Van, D.
    Mantz, A.
    Marrone, D. P.
    McDonald, M.
    McMahon, J. J.
    Meyer, S. S.
    Millea, M.
    Mocanu, L. M.
    ASTROPHYSICAL JOURNAL, 2015, 806 (02)
  • [33] Friction compensation for an m-Level telescope based on high-precision LuGre parameters identification
    Su, Yan-Rui
    Wang, Qiang
    Yan, Fa-Bao
    Huang, Yong-Mei
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (01)
  • [34] High-resolution observations of the cosmic microwave background power spectrum with ACBAR
    Kuo, CL
    Ade, PAR
    Bock, JJ
    Cantalupo, C
    Daub, MD
    Goldstein, J
    Holzapfel, WL
    Lange, AE
    Lueker, M
    Newcomb, M
    Peterson, JB
    Ruhl, J
    Runyan, MC
    Torbet, E
    ASTROPHYSICAL JOURNAL, 2004, 600 (01) : 32 - 51
  • [35] The evolution of the cosmic microwave background temperature Measurements of TCMB at high redshift from carbon monoxide excitation
    Noterdaeme, P.
    Petitjean, P.
    Srianand, R.
    Ledoux, C.
    Lopez, S.
    ASTRONOMY & ASTROPHYSICS, 2011, 526
  • [36] Comptonization of the cosmic microwave background by high energy particles residing in AGN cocoons
    Prokhorov, D. A.
    Antonuccio-Delogu, V.
    Silk, J.
    ASTRONOMY & ASTROPHYSICS, 2010, 520
  • [37] SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope
    Benson, B. A.
    Ade, P. A. R.
    Ahmed, Z.
    Allen, S. W.
    Arnold, K.
    Austermann, J. E.
    Bender, A. N.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Cho, H. M.
    Cliche, J. F.
    Crawford, T. M.
    Cukierman, A.
    de Haan, T.
    Dobbs, M. A.
    Dutcher, D.
    Everett, W.
    Gilbert, A.
    Halverson, N. W.
    Hanson, D.
    Harrington, N. L.
    Hattori, K.
    Henning, J. W.
    Hilton, G. C.
    Holder, G. P.
    Holzapfel, W. L.
    Irwin, K. D.
    Keisler, R.
    Knox, L.
    Kubik, D.
    Kuo, C. L.
    Lee, A. T.
    Leitch, E. M.
    Li, D.
    McDonald, M.
    Meyer, S. S.
    Montgomery, J.
    Myers, M.
    Natoli, T.
    Nguyen, H.
    Novosad, V.
    Padin, S.
    Pan, Z.
    Pearson, J.
    Reichardt, C. L.
    Ruhl, J. E.
    Saliwanchik, B. R.
    Simard, G.
    Smecher, G.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII, 2014, 9153
  • [38] High-precision automated follow-up transit photometry with a 50-cm robotic telescope
    Eibe, M. T.
    Cuesta, L.
    Ullan, A.
    Perez-Verde, A.
    Navas, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (02) : 1181 - 1186
  • [39] High-impedance NbSi TES sensors for studying the cosmic microwave background radiation
    Nones, C.
    Marnieros, S.
    Benoit, A.
    Berge, L.
    Bideaud, A.
    Camus, P.
    Dumoulin, L.
    Monfardini, A.
    Rigaut, O.
    ASTRONOMY & ASTROPHYSICS, 2012, 548
  • [40] A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data
    Lee, AT
    Ade, P
    Balbi, A
    Bock, J
    Borrill, J
    Boscaleri, A
    de Bernardis, P
    Ferreira, PG
    Hanany, S
    Hristov, VV
    Jaffe, AH
    Mauskopf, PD
    Netterfield, CB
    Pascale, E
    Rabii, B
    Richards, PL
    Smoot, GF
    Stompor, R
    Winant, CD
    Wu, JHP
    ASTROPHYSICAL JOURNAL, 2001, 561 (01) : L1 - L5