Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation

被引:78
作者
Isa, Nor Ashidi Mat [1 ]
Salamah, Samy A. [1 ]
Ngah, Umi Kalthum [1 ]
机构
[1] Univ Sains Malaysia, Sch Elect & Elect Engn, Perai 14300, Penang, Malaysia
关键词
Fuzzy moving k-means; adaptive moving k-means; fuzzy k-means; adaptive fuzzy moving k-means; image segmentation; clustering;
D O I
10.1109/TCE.2009.5373781
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation remains one of the major challenges in image analysis. Many segmentation algorithms have been developed for various applications. Unsatisfactory results have been encountered in some cases, for many existing segmentation algorithms. In this paper, we introduce three modified versions of the conventional moving k-means clustering algorithm called the fuzzy moving k-means, adaptive moving k-means and adaptive fuzzy moving k-means algorithms for image segmentation application. Based on analysis done using standard images (i.e. original bridge and noisy bridge) and hard evidence on microscopic digital image (i.e. segmentation of Sprague Dawley rat sperm), our final segmentation results compare favorably with the results obtained by the conventional k-means, fuzzy c-means and moving k-means algorithms. The qualitative and quantitative analysis done proved that the proposed algorithms are less sensitive with respect to noise. As such, the occurrence of dead centers, center redundancy and trapped center at local minima problems can be avoided. The proposed clustering algorithms are also less sensitive to initialization process of clustering value. The final center values obtained are located within their respective groups of data. This enabled the size and shape of the object in question to be maintained and preserved. Based on the simplicity and capabilities of the proposed algorithms, these algorithms are suitable to be implemented in consumer electronics products such as digital microscope, or digital camera as post processing tool for digital images.
引用
收藏
页码:2145 / 2153
页数:9
相关论文
共 50 条
  • [31] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    ComputationalVisualMedia, 2019, 5 (04) : 347 - 361
  • [32] Fully Convolutional Neural Network Combined with K-means Clustering Algorithm for Image Segmentation
    He, Bing
    Qiao, FengXiang
    Chen, Weijun
    Wen, Ying
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [33] Evaluation of modified adaptive k-means segmentation algorithm
    Debelee, Taye Girma
    Schwenker, Friedhelm
    Rahimeto, Samuel
    Yohannes, Dereje
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 347 - 361
  • [34] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    Computational Visual Media, 2019, 5 : 347 - 361
  • [35] Single Image Super Resolution by Adaptive K-means Clustering
    Rahnama, Javad
    Shirpour, Mohsen
    Manzuri, Mohammad Taghi
    2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 209 - 214
  • [36] K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    Clausi, DA
    PATTERN RECOGNITION, 2002, 35 (09) : 1959 - 1972
  • [37] AN IMPROVED k-MEANS ALGORITHM WITH SPATIAL CONSTRAINTS FOR IMAGE SEGMENTATION
    Hu, Meng
    Tsang, Eric C. C.
    Guo, Yanting
    Zhang, Qingshuo
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 188 - 194
  • [38] An improved K-means algorithm for underwater image background segmentation
    Wei Chen
    Cenyu He
    Chunlin Ji
    Meiying Zhang
    Siyu Chen
    Multimedia Tools and Applications, 2021, 80 : 21059 - 21083
  • [39] An improved K-means algorithm for underwater image background segmentation
    Chen, Wei
    He, Cenyu
    Ji, Chunlin
    Zhang, Meiying
    Chen, Siyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (14) : 21059 - 21083
  • [40] Image segmentation based on ant colony optimization and K-means clustering
    Zhao, Bo
    Zhu, Zhongxiang
    Mao, Enrong
    Song, Zhenghe
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 459 - 463