Smooth structures and Einstein metrics on Cp2#5, 6, 7(CP2)over-bar

被引:5
作者
Rasdeaconu, Rares [1 ]
Suvaina, Ioana [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
COMPLEX-SURFACES; CURVATURE; MANIFOLDS;
D O I
10.1017/S0305004109002527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that each of the topological 4-manifolds Cp-2#k (CP2) over bar, for k = 5, 6, 7, 8 admits a smooth structure which has an Einstein metric of scalar curvature s > 0, a smooth structure which carries an Einstein metric with s < 0 and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics. We also exhibit new examples of higher dimensional manifolds carrying Einstein metrics of both positive and negative scalar curvature.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 17 条
[1]   Constructing infinitely many smooth structures on small 4-manifolds [J].
Akhmedov, Anar ;
Baykur, R. Inanc ;
Park, B. Doug .
JOURNAL OF TOPOLOGY, 2008, 1 (02) :409-428
[2]  
[Anonymous], CAMBRIDGE TRACTS MAT
[3]  
Aubin T, 1976, C.R. Acad. Sci. Paris, serie A, V283, P119
[4]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[5]  
Catanese F, 1997, MATH RES LETT, V4, P843
[6]   Ricci curvature, minimal volumes, and Seiberg-Witten theory [J].
LeBrun, C .
INVENTIONES MATHEMATICAE, 2001, 145 (02) :279-316
[7]  
LeBrun C, 1996, MATH RES LETT, V3, P133
[8]   A simply connected surface of general type with pg=0 and K2=2 [J].
Lee, Yongnam ;
Park, Jongil .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :483-505
[9]  
Morgan J. W., 1996, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, V44
[10]  
PARK H, ARXIV08033667V1MATHA