Multi-scale Conditional Transition Map: Modeling Spatial-temporal Dynamics of Human Movements with Local and Long-term Correlations
被引:0
|
作者:
Wang, Zhan
论文数: 0引用数: 0
h-index: 0
机构:
KTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, SwedenKTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, Sweden
Wang, Zhan
[1
]
Jensfelt, Patric
论文数: 0引用数: 0
h-index: 0
机构:
KTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, SwedenKTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, Sweden
Jensfelt, Patric
[1
]
Folkesson, John
论文数: 0引用数: 0
h-index: 0
机构:
KTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, SwedenKTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, Sweden
Folkesson, John
[1
]
机构:
[1] KTH, Royal Inst Technol, CSC, Comp Vis & Act Percept Lab,Ctr Autonomous Syst, S-10044 Stockholm, Sweden
来源:
2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
|
2015年
关键词:
PATTERNS;
MOTION;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper presents a novel approach to modeling the dynamics of human movements with a grid-based representation. The model we propose, termed as Multi-scale Conditional Transition Map (MCTMap), is an inhomogeneous HMM process that describes transitions of human location state in spatial and temporal space. Unlike existing work, our method is able to capture both local correlations and longterm dependencies on faraway initiating events. This enables the learned model to incorporate more information and to generate an informative representation of human existence probabilities across the grid map and along the temporal axis for intelligent interaction of the robot, such as avoiding or meeting the human. Our model consists of two levels. For each grid cell, we formulate the local dynamics using a variant of the left-to-right HMM, and thus explicitly model the exiting direction from the current cell. The dependency of this process on the entry direction is captured by employing the Input-Output HMM (IOHMM). On the higher level, we introduce the place where the whole trajectory originated into the IOHMM framework forming a hierarchical input structure to capture long-term dependencies. The capabilities of our method are verified by experimental results from 10 hours of data collected in an office corridor environment.
机构:
Georgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Georgia Regents Univ, Med Coll Georgia, Dept Neurol, Augusta, GA USAGeorgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Zhu, Xiaoyuan
Li, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Georgia Regents Univ, Med Coll Georgia, Dept Neurol, Augusta, GA USAGeorgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Li, Meng
Li, Xiaojian
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Georgia Regents Univ, Med Coll Georgia, Dept Neurol, Augusta, GA USAGeorgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Li, Xiaojian
Yang, Zhiyong
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Georgia Regents Univ, Med Coll Georgia, Dept Ophthalmol, Augusta, GA USAGeorgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Yang, Zhiyong
Tsien, Joe Z.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA
Georgia Regents Univ, Med Coll Georgia, Dept Neurol, Augusta, GA USAGeorgia Regents Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA USA