Diffusion- and Homogeneous-Charge Combustion of Volatile Ethers in a Compression Ignition Engine

被引:3
|
作者
Schonborn, Alessandro [1 ]
Ladommatos, Nicos [1 ]
Bae, Choongsik [2 ]
机构
[1] UCL, London WC1E 7JE, England
[2] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea
关键词
MECHANISM; ALCOHOLS;
D O I
10.1021/ef900697r
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The combustion characteristics of several volatile ether molecules were studied under diffusion and homogeneous charge combustion modes in it compression ignition engine. Volatile ethers of low molecular mass are organic molecules that could be used as fuel for compression ignition engines. The physical and chemical characteristics of such ethers comprise high oxygen content, high volatility, and low viscosity, all of which arc conducive to high thermal efficiencies and low pollutant emission during engine operation. It is thought that sootless combustion may be achieved in diffusion flames of high-speed direct injection diesel engines with some volatile ethers, due to their high oxygen content. The formation of oxides of nitrogen from the combustion of others may be almost eliminated by the use of lean, homogeneous Charge compression ignition combustion, for which these fuel molecules arc particularly suitable due to their high volatility. The First part of the experiments examines the combustion characteristics of dimethyl ether under diesel engine diffusion combustion conditions. Heat release of combustion, engine efficiency, gaseous pollutant, and nanoparticle emissions were measured and results were compared with those of conventional diesel fuel at comparable engine operating conditions. It was observed that within the accuracy of the instruments, soot-free combustion could be achieved with pure dimethyl ether in diffusion combustion. The addition of an alkyl ester lubricity-improving additive to dimethyl ether wits observed to result in the emission of small nucleation mode nanoparticles (5-40 nm diameter) in the exhaust gas under certain conditions. The experiments Suggested that these particles may consist of droplets of the fuel lubricity additive and engine oil forming through condensation. The second part of the experiments investigates the potential of using volatile ethers in direct-injected homogeneous charge compression ignition combustion. The molecular structure of the fuel was observed to have an important influence on the ignition process and heat release characteristics combustion. Several straight-chained and branched ether molecules were used for homogeneous charge compression ignition combustion. The experiments showed that intentional blending of the fuel molecules could be used to achieve homogeneous charge compression ignition combustion at high thermal efficiency, and that the ignition timing of the homogeneous ether-air charge within the Cycle Could be controlled via the molecular composition of the fuel.
引用
收藏
页码:5865 / 5878
页数:14
相关论文
共 50 条
  • [1] Homogeneous charge compression ignition engine combustion
    Kozarac, Darko
    Mahalec, Ivan
    Lulic, Zoran
    STROJARSTVO, 2005, 47 (5-6): : 185 - 193
  • [2] A spectroscopic analysis of combustion in Homogeneous Charge Compression Ignition engine
    Iijima, Akira
    Shoji, Hideo
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 3, 2007, : 821 - 827
  • [3] Combustion and emission characteristics of a homogeneous charge compression ignition engine
    Hu, TG
    Liu, SH
    Zhou, LB
    Chi, Z
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2005, 219 (D9) : 1133 - 1139
  • [4] Combustion limits and efficiency in a homogeneous charge compression ignition engine
    Shell Global Solutions, Chester, United Kingdom
    不详
    Int. J. Engine Res., 2006, 3 (215-236):
  • [5] Control of ignition and combustion of dimethyl ether in homogeneous charge compression ignition engine
    Kim, KO
    Azetsu, A
    Oikawa, C
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2003, 46 (01) : 68 - 74
  • [6] CHARACTERISATION OF THE COMBUSTION PROCESS IN THE SPARK IGNITION AND HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE
    Vucetic, Ante
    Bozic, Mladen
    Kozarac, Darko
    Lulic, Zoran
    THERMAL SCIENCE, 2018, 22 (05): : 2025 - 2037
  • [7] Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition engine
    Song R.
    Hu T.
    Zhou L.
    Liu S.
    Li W.
    Frontiers of Energy and Power Engineering in China, 2007, 1 (4): : 463 - 467
  • [8] Performance Evaluation of Homogeneous Charge Compression Ignition Combustion Engine - A Review
    Kodancha, Pradyumna
    Pai, Anand
    Kini, Chandrakant R.
    Bayar, Rajesh K.
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2020, 52 (03): : 289 - 309
  • [9] Combustion and emission characteristics of partial homogeneous charge compression ignition engine
    Kim, DS
    Kim, MY
    Lee, CS
    COMBUSTION SCIENCE AND TECHNOLOGY, 2005, 177 (01) : 107 - 125
  • [10] Ignition control of homogeneous-charge compression ignition (HCCI) combustion through adaptation of the fuel molecular structure by reaction with ozone
    Schoenborn, Alessandro
    Hellier, Paul
    Aliev, Abil E.
    Ladommatos, Nicos
    FUEL, 2010, 89 (11) : 3178 - 3184