Point separation;
Functional data analysis;
Logistic regression;
MODELS;
D O I:
10.1016/j.spl.2017.04.019
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We study point separation for the logistic regression model for Hilbert space-valued variables. We prove that the separating hyperplane can be found from a finite set of candidates and give an upper bound for the probability of point separation. (C) 2017 Elsevier B.V. All rights reserved.