Implicit midpoint rule and extrapolation to singularly perturbed boundary value problems

被引:18
作者
Somali, S [1 ]
Davulcu, S [1 ]
机构
[1] Dokuz Eylul Univ, Fac Arts & Sci, Dept Math, Izmir, Turkey
关键词
extrapolation; singular perturbation; boundary value problem;
D O I
10.1080/00207160008804969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear singularly perturbed boundary value problem epsilon y(n) - py =f(x), y(0) = y(l) = 0 is solved numerically by reducing to the first order linear system and applying the implicit midpoint rule on equidistant meshes, Using the asymytotic expansion of the global error, the second order of convergence is improved by Richardson extrapolation when h(2) less than or equal to epsilon. Some numerical examples are given in illustration of this theory.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 16 条
[1]  
[Anonymous], ZB RAD PRIR MAT FA M
[2]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[3]   The iterated defect correction methods for singular two-point boundary value problems [J].
Ertem, S ;
Somali, S .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 69 (3-4) :331-349
[4]  
FRANK R, 1977, NUMER MATH, V27, P407, DOI 10.1007/BF01399604
[5]  
HERCEG D, 1990, NUMER MATH, V56, P675, DOI 10.1007/BF01405196
[6]   HIGHER-ORDER SCHEMES AND RICHARDSON EXTRAPOLATION FOR SINGULAR PERTURBATION PROBLEMS [J].
HERCEG, D ;
VULANOVIC, R ;
PETROVIC, N .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (01) :129-139
[7]  
HERCEG D, 1981, ZB RAD PRIR MAT FAK, V11, P105
[8]  
HERCEG D, 1981, ZB RAD PRIR MAT FAK, V11, P117
[9]  
HERCEG D, 1986, 5 C APPL MATH, P59
[10]   DIFFERENCE METHODS FOR BOUNDARY-VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS [J].
KELLER, HB ;
WHITE, AB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) :791-802