Glycogen synthase kinase-3 - An overview of an over-achieving protein kinase

被引:238
作者
Kockeritz, Lisa
Doble, Bradley
Patel, Satish
Woodgett, James R.
机构
[1] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
[2] Ontario Canc Inst, Toronto, ON M5G 2M9, Canada
关键词
D O I
10.2174/1389450110607011377
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Glycogen synthase kinase-3 (GSK-3) has attracted much scrutiny due to its plethora of cellular functions, novel mechanisms of regulation and its potential as a therapeutic target for several common diseases. In mammals, GSK-3 is encoded by two genes, termed GSK-3 alpha and GSK-3 beta, that yield related but distinct protein-serine kinases. GSK-3 is unusual in that its protein kinase activity tends to be high in resting cells and cellular stimuli, such as hormones and growth factors, result in its catalytic inactivation. Further, many of the substrate proteins of GSK-3 are functionally inhibited by phosphorylation. Thus, signals that inhibit GSK-3 often cause activation of its diverse array of target proteins. Regulation of GSK-3 is important for normal development, regulation of metabolism, neuronal growth and differentiation and modulation of cell death. Dysregulation of GSK-3 activity has been implicated in human pathologies such as neurodegenerative diseases and type-2 diabetes. In this introductory chapter we provide a primer on the modes of GSK-3 regulation and a description of the various signaling pathways and cellular processes in which GSK-3 is an active participant.
引用
收藏
页码:1377 / 1388
页数:12
相关论文
共 172 条
[31]   Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling [J].
Ding, VW ;
Chen, RH ;
McCormick, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32475-32481
[32]   Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle [J].
Dokken, BB ;
Sloniger, JA ;
Henriksen, EJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 288 (06) :E1188-E1194
[33]   Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice [J].
Eldar-Finkelman, H ;
Schreyer, SA ;
Shinohara, MM ;
LeBoeuf, RC ;
Krebs, EG .
DIABETES, 1999, 48 (08) :1662-1666
[34]   Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells [J].
EldarFinkelman, H ;
Argast, GM ;
Foord, O ;
Fischer, EH ;
Krebs, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (19) :10228-10233
[35]   INACTIVATION OF GLYCOGEN-SYNTHASE KINASE-3 BY EPIDERMAL GROWTH-FACTOR IS MEDIATED BY MITOGEN-ACTIVATED PROTEIN KINASE/P90 RIBOSOMAL-PROTEIN S6 KINASE SIGNALING PATHWAY IN NIH/3T3 CELLS [J].
ELDARFINKELMAN, H ;
SEGER, R ;
VANDENHEEDE, JR ;
KREBS, EG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (03) :987-990
[36]   Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action [J].
EldarFinkelman, H ;
Krebs, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9660-9664
[37]   GLYCOGEN-SYNTHASE KINASE-3 FROM RABBIT SKELETAL-MUSCLE - SEPARATION FROM CYCLIC-AMP-DEPENDENT PROTEIN-KINASE AND PHOSPHORYLASE-KINASE [J].
EMBI, N ;
RYLATT, DB ;
COHEN, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1980, 107 (02) :519-527
[38]   Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways [J].
Espinosa, L ;
Inglés-Esteve, J ;
Aguilera, C ;
Bigas, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (34) :32227-32235
[39]   Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A [J].
Fang, XJ ;
Yu, SX ;
Lu, YL ;
Bast, RC ;
Woodgett, JR ;
Mills, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11960-11965
[40]   Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway [J].
Fang, XJ ;
Yu, SX ;
Tanyi, JL ;
Lu, YL ;
Woodgett, JR ;
Mills, GB .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (07) :2099-2110