A numerical method for solving retrospective inverse problem of fractional parabolic equation

被引:4
作者
Su, Lingde [1 ,4 ]
Huang, Jian [2 ,3 ]
Vasil'ev, V. I. [4 ]
Li, Ao [2 ,3 ]
Kardashevsky, A. M. [4 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang, Shandong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
[3] Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[4] North Eastern Fed Univ, Inst Math & Informat Sci, Yakutsk, Republic Of Sak, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Time fractional parabolic equation; Inverse problem; Caputo fractional derivatives; Ill-posed problems; Conjugate gradients method; SAVITZKY-GOLAY; HEAT-LIKE; DIFFUSION; APPROXIMATE; COEFFICIENT;
D O I
10.1016/j.cam.2022.114366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An effective numerical method for solving the inverse problem of time fractional parabolic equation is constructed in this paper. We use implicit finite difference method to discretize the problem and for the inverse problem we propose a conjugate gradient type regularization method to solve the discretized ill-posed linear systems. By comparing the different errors and the results with different perturbed data in several numerical experiments, our method is shown to solve the inverse problem, even with some noisy measurements, efficiently and stably. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the Numerical Solution to an Inverse Problem of Recovering a Source of Special Type in a Parabolic Equation
    Rahimov, A. B.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2020, 56 (04) : 611 - 620
  • [42] Finite volume method for solving a one-dimensional parabolic inverse problem
    Wang, Bo
    Zou, Guang-an
    Zhao, Peng
    Wang, Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5227 - 5235
  • [43] ON AN INVERSE PROBLEM FOR FRACTIONAL EVOLUTION EQUATION
    Nguyen Huy Tuan
    Kirane, Mokhtar
    Long Dinh Le
    Van Thinh Nguyen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (01): : 111 - 134
  • [44] An inverse problem for a fractional diffusion equation
    Xiong, Xiangtuan
    Guo, Hongbo
    Liu, Xiaohong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (17) : 4474 - 4484
  • [45] INVERSE PROBLEM FOR FRACTIONAL DIFFUSION EQUATION
    Vu Kim Tuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) : 31 - 55
  • [46] Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain
    Durdiev, D. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2022, 26 (02): : 355 - 367
  • [47] An inverse problem of identifying the coefficient of parabolic equation
    Yang, Liu
    Yu, Jian-Ning
    Deng, Zui-Cha
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (10) : 1984 - 1995
  • [48] Inverse problem for fractional diffusion equation
    Vu Kim Tuan
    Fractional Calculus and Applied Analysis, 2011, 14 : 31 - 55
  • [49] Nonlocal Inverse Problem for a Parabolic Equation with Degeneration
    N. M. Huzyk
    Ukrainian Mathematical Journal, 2013, 65 : 847 - 863
  • [50] Nonlocal Inverse Problem for a Parabolic Equation with Degeneration
    Huzyk, N. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (06) : 847 - 863