A numerical method for solving retrospective inverse problem of fractional parabolic equation

被引:4
作者
Su, Lingde [1 ,4 ]
Huang, Jian [2 ,3 ]
Vasil'ev, V. I. [4 ]
Li, Ao [2 ,3 ]
Kardashevsky, A. M. [4 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang, Shandong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
[3] Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[4] North Eastern Fed Univ, Inst Math & Informat Sci, Yakutsk, Republic Of Sak, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Time fractional parabolic equation; Inverse problem; Caputo fractional derivatives; Ill-posed problems; Conjugate gradients method; SAVITZKY-GOLAY; HEAT-LIKE; DIFFUSION; APPROXIMATE; COEFFICIENT;
D O I
10.1016/j.cam.2022.114366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An effective numerical method for solving the inverse problem of time fractional parabolic equation is constructed in this paper. We use implicit finite difference method to discretize the problem and for the inverse problem we propose a conjugate gradient type regularization method to solve the discretized ill-posed linear systems. By comparing the different errors and the results with different perturbed data in several numerical experiments, our method is shown to solve the inverse problem, even with some noisy measurements, efficiently and stably. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An Inverse Problem for a Parabolic Convolution Equation
    Boumenir, A.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (03): : 447 - 456
  • [32] An Inverse Problem for a Parabolic Equation with Involution
    B. Kh. Turmetov
    B. J. Kadirkulov
    Lobachevskii Journal of Mathematics, 2021, 42 : 3006 - 3015
  • [33] A DYNAMICAL INVERSE PROBLEM FOR A PARABOLIC EQUATION
    Maksimov, Vyacheslav
    OPUSCULA MATHEMATICA, 2006, 26 (02) : 327 - 342
  • [34] Iterative method of solving the inverse problem for a quasilinear hyperbolic equation
    Denisov A.M.
    Solov'eva S.I.
    Computational Mathematics and Modeling, 2005, 16 (3) : 193 - 198
  • [35] An Inverse Problem for the General Kinetic Equation and a Numerical Method
    Amirov, Arif
    Golgeleyen, Fikret
    Rahmanova, Ayten
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 43 (02): : 131 - 147
  • [36] Numerical Method for Solving an Inverse Boundary Problem with Unknown Initial Conditions for Parabolic PDE Using Discrete Regularization
    Yaparova, Natalia M.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 752 - 759
  • [37] A NUMERICAL SOLUTION OF AN INVERSE PARABOLIC PROBLEM
    Pourgholi, R.
    Abtahi, M.
    Tabasi, S. H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2012, 2 (02): : 195 - 209
  • [38] A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation
    Qian, Zhi
    Feng, Xiaoli
    APPLICABLE ANALYSIS, 2017, 96 (10) : 1656 - 1668
  • [39] Solvability of the Nonlocal Inverse Parabolic Problem and Numerical Results
    Huntul, M. J.
    Oussaeif, Taki-Eddine
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (03): : 1109 - 1126
  • [40] On the Numerical Solution to an Inverse Problem of Recovering a Source of Special Type in a Parabolic Equation
    A. B. Rahimov
    Cybernetics and Systems Analysis, 2020, 56 : 611 - 620