A numerical method for solving retrospective inverse problem of fractional parabolic equation

被引:4
|
作者
Su, Lingde [1 ,4 ]
Huang, Jian [2 ,3 ]
Vasil'ev, V. I. [4 ]
Li, Ao [2 ,3 ]
Kardashevsky, A. M. [4 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang, Shandong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
[3] Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[4] North Eastern Fed Univ, Inst Math & Informat Sci, Yakutsk, Republic Of Sak, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Time fractional parabolic equation; Inverse problem; Caputo fractional derivatives; Ill-posed problems; Conjugate gradients method; SAVITZKY-GOLAY; HEAT-LIKE; DIFFUSION; APPROXIMATE; COEFFICIENT;
D O I
10.1016/j.cam.2022.114366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An effective numerical method for solving the inverse problem of time fractional parabolic equation is constructed in this paper. We use implicit finite difference method to discretize the problem and for the inverse problem we propose a conjugate gradient type regularization method to solve the discretized ill-posed linear systems. By comparing the different errors and the results with different perturbed data in several numerical experiments, our method is shown to solve the inverse problem, even with some noisy measurements, efficiently and stably. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation
    Koleva, Miglena N.
    Vulkov, Lubin G.
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [22] Optimization method for the inverse problem of reconstructing the source term in a parabolic equation
    Yang, Liu
    Deng, Zui-Cha
    Yu, Jian-Ning
    Luo, Guan-Wei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (02) : 314 - 326
  • [23] Solving the inverse problem of identifying an unknown source term in a parabolic equation
    Shidfar, A.
    Babaei, A.
    Molabahrami, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1209 - 1213
  • [24] INVERSE PROBLEM FOR FRACTIONAL ORDER PSEUDO-PARABOLIC EQUATION WITH INVOLUTION
    Serikbaev, D.
    UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 119 - 135
  • [25] An efficient method for solving an inverse problem for the Richards equation
    Bitterlich, S
    Knabner, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (01) : 153 - 173
  • [26] A numerical method for solving the time fractional Schrodinger equation
    Liu, Na
    Jiang, Wei
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1235 - 1248
  • [27] Numerical Method for Solving the Inverse Problem of Nonisothermal Filtration
    E. R. Badertdinova
    M. Kh. Khairullin
    M. N. Shamsiev
    R. M. Khairullin
    Lobachevskii Journal of Mathematics, 2019, 40 : 718 - 723
  • [28] Numerical Method for Solving the Inverse Problem of Nonisothermal Filtration
    Badertdinova, E. R.
    Khairullin, M. Kh
    Shamsiev, M. N.
    Khairullin, R. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (06) : 718 - 723
  • [29] Analysis of the inverse problem in a time fractional parabolic equation with mixed boundary conditions
    Ebru Ozbilge
    Ali Demir
    Boundary Value Problems, 2014
  • [30] An Inverse Problem for a Parabolic Equation with Involution
    Turmetov, B. Kh
    Kadirkulov, B. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) : 3006 - 3015