The Drazin inverse of an even-order tensor and its application to singular tensor equations

被引:55
作者
Ji, Jun
Wei, Yimin [1 ]
机构
[1] Kennesaw State Univ, Dept Math, 1100 S Marietta Pkwy, Marietta, GA 30060 USA
基金
中国国家自然科学基金;
关键词
Drazin inverse; Einstein product; Tensor equation; The canonical form; GENERALIZED INVERSES; SYSTEMS; PRODUCT;
D O I
10.1016/j.camwa.2018.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of the Moore-Penrose inverses of matrices was recently extended from matrix space to even-order tensor space with Einstein product in the literature. In this paper, we further study the properties of even-order tensors with Einstein product. We define the index and characterize the invertibility of an even-order square tensor. We also extend the notion of the Drazin inverse of a square matrix to an even-order square tensor. An expression for the Drazin inverse through the core-nilpotent decomposition for a tensor of even-order is obtained. As an application, the Drazin inverse solution of the singular linear tensor equation A * x = B will also be included. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:3402 / 3413
页数:12
相关论文
共 29 条
  • [11] Einstein A, 2007, The Collected Papers of Albert Einstein, V6, P146
  • [12] Eldén L, 2007, FUND ALGORITHMS, V4, pIX, DOI 10.1137/1.9780898718867
  • [13] Algebraic connectivity of an even uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (04) : 564 - 579
  • [14] Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product
    Ji, Jun
    Wei, Yimin
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) : 1319 - 1337
  • [15] The generalized inverses of tensors and an application to linear models
    Jin, Hongwei
    Bai, Minru
    Benitez, Julio
    Liu, Xiaoji
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) : 385 - 397
  • [16] Tensor Decompositions and Applications
    Kolda, Tamara G.
    Bader, Brett W.
    [J]. SIAM REVIEW, 2009, 51 (03) : 455 - 500
  • [17] [李浙宁 Li Zhening], 2014, [运筹学学报, Operations Research Transaction], V18, P134
  • [18] Linear operators and positive semidefiniteness of symmetric tensor spaces
    Luo ZiYan
    Qi LiQun
    Ye YinYu
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 197 - 212
  • [19] Gradient methods for computing the Drazin-inverse solution
    Miljkovic, Sladjana
    Miladinovic, Marko
    Stanimirovic, Predrag S.
    Wei, Yimin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 : 255 - 263
  • [20] Panigrahy K., 2017, ARXIV170805332V1MATH