The Drazin inverse of an even-order tensor and its application to singular tensor equations

被引:59
作者
Ji, Jun
Wei, Yimin [1 ]
机构
[1] Kennesaw State Univ, Dept Math, 1100 S Marietta Pkwy, Marietta, GA 30060 USA
基金
中国国家自然科学基金;
关键词
Drazin inverse; Einstein product; Tensor equation; The canonical form; GENERALIZED INVERSES; SYSTEMS; PRODUCT;
D O I
10.1016/j.camwa.2018.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of the Moore-Penrose inverses of matrices was recently extended from matrix space to even-order tensor space with Einstein product in the literature. In this paper, we further study the properties of even-order tensors with Einstein product. We define the index and characterize the invertibility of an even-order square tensor. We also extend the notion of the Drazin inverse of a square matrix to an even-order square tensor. An expression for the Drazin inverse through the core-nilpotent decomposition for a tensor of even-order is obtained. As an application, the Drazin inverse solution of the singular linear tensor equation A * x = B will also be included. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:3402 / 3413
页数:12
相关论文
共 29 条
[11]  
Einstein A, 2007, The Collected Papers of Albert Einstein, V6, P146
[12]  
Eldén L, 2007, FUND ALGORITHMS, V4, pIX, DOI 10.1137/1.9780898718867
[13]   Algebraic connectivity of an even uniform hypergraph [J].
Hu, Shenglong ;
Qi, Liqun .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (04) :564-579
[14]   Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product [J].
Ji, Jun ;
Wei, Yimin .
FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) :1319-1337
[15]   The generalized inverses of tensors and an application to linear models [J].
Jin, Hongwei ;
Bai, Minru ;
Benitez, Julio ;
Liu, Xiaoji .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) :385-397
[16]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[17]  
[李浙宁 Li Zhening], 2014, [运筹学学报, Operations Research Transaction], V18, P134
[18]   Linear operators and positive semidefiniteness of symmetric tensor spaces [J].
Luo ZiYan ;
Qi LiQun ;
Ye YinYu .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) :197-212
[19]   Gradient methods for computing the Drazin-inverse solution [J].
Miljkovic, Sladjana ;
Miladinovic, Marko ;
Stanimirovic, Predrag S. ;
Wei, Yimin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 :255-263
[20]  
Panigrahy K., 2017, ARXIV170805332V1MATH