On the boundedness of generalized Cesaro operators on Sobolev spaces

被引:7
作者
Lizama, Carlos [1 ]
Miana, Pedro J. [2 ]
Ponce, Rodrigo [3 ]
Sanchez-Lajusticia, Luis [2 ]
机构
[1] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
[2] Univ Zaragoza, Inst Univ Matemat & Aplicac, Dept Matemat, E-50009 Zaragoza, Spain
[3] Univ Talca, Inst Matemat & Fis, Talca, Chile
关键词
Cesaro operators; Sobolev spaces; Boundedness; SPECTRUM;
D O I
10.1016/j.jmaa.2014.04.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For beta > 0 and p >= 1, the generalized Cesaro operator l(beta)f(t) := beta/t(beta)integral(t)(0)(t - s)(beta-1) f(s)ds and its companion operator l beta* defined on Sobolev spaces J(p)((alpha))(t(alpha)) and Jp((alpha))(vertical bar t vertical bar(alpha)) (where alpha >= 0 is the fractional order of derivation and are embedded in L-p(R+) and L-p(R) respectively) are studied. We prove that if p > 1, then l(beta) and l(beta)* are bounded operators and commute on J(p)((alpha))(t(alpha)) and J(p)((alpha))(vertical bar t vertical bar(alpha)) . We calculate explicitly their spectra sigma(l(beta)) and sigma(l(beta)(*)) and their operator norms (which depend on p). For 1 < p <= 2, we prove that <(l(beta)(f))over cap> = l(beta)*((f) over cap) and <(l(beta)*(f))over cap> = l(beta)((f) over cap) where (f) over cap denotes the Fourier transform of a function f is an element of L-p (R). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 394
页数:22
相关论文
共 25 条