Poisson deformations of symplectic quotient singularities

被引:95
作者
Ginzburg, V [1 ]
Kaledin, D
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] VA Steklov Math Inst, Moscow 117333, Russia
关键词
Poisson deformations; McKay correspondence; Calogero-Moser space;
D O I
10.1016/j.aim.2003.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a connection between smooth symplectic resolutions and symplectic deformations of a (possibly singular) affine Poisson variety. In particular, let V be a finite-dimensional complex symplectic vector space and G subset of Sp(V) a finite subgroup. Our main result says that the so-called Calogero-Moser deformation of the orbifold V/G is, in an appropriate sense, a versal Poisson deformation. That enables us to determine the algebra structure on the cohomology H-.(X, C) of any smooth symplectic resolution X --> V/G (multiplicative McKay correspondence). We prove further that if G subset of GL(h) is an irreducible Weyl group and V = h circle plus h*, then no smooth symplectic resolution of V/G exists unless G is of types A, B, C. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 57
页数:57
相关论文
共 41 条
[1]   Homology of the invariants of a Weyl Algebra under the action of a finite group [J].
Alev, J ;
Farinati, MA ;
Lambre, T ;
Solotar, AL .
JOURNAL OF ALGEBRA, 2000, 232 (02) :564-577
[2]   Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group [J].
Alvarez, MS .
JOURNAL OF ALGEBRA, 2002, 248 (01) :291-306
[3]  
BARANOVSKY V, ARXIVMATHAG0206256
[4]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[5]  
BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
[6]   The McKay correspondence as an equivalence of derived categories [J].
Bridgeland, T ;
King, A ;
Reid, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :535-554
[7]  
Brown KA, 2003, J REINE ANGEW MATH, V559, P193
[8]  
BRYLINSKI JL, 1988, J DIFFER GEOM, V28, P93
[9]   Contact singularities [J].
Campana, F ;
Flenner, H .
MANUSCRIPTA MATHEMATICA, 2002, 108 (04) :529-541
[10]  
CHEN W, ARXIVMATHAG0004129