Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

被引:73
作者
Beaussart, Audrey [1 ]
Herman, Philippe [1 ]
El-Kirat-Chatel, Sofiane [1 ]
Lipke, Peter N. [2 ]
Kucharikova, Sona [3 ,4 ]
Van Dijck, Patrick [3 ,4 ]
Dufrene, Yves F. [1 ]
机构
[1] Catholic Univ Louvain, Inst Life Sci, B-1348 Louvain, Belgium
[2] CUNY Brooklyn Coll, Dept Biol, Brooklyn, NY 11210 USA
[3] Katholieke Univ Leuven, VIB, Dept Mol Microbiol, Louvain, Belgium
[4] Katholieke Univ Leuven, Lab Mol Cell Biol, B-3001 Louvain, Belgium
关键词
AUREUS; ADHESION; BIOFILMS; PROTEINS; HYPHAE; BACTERIAL; ALS5P;
D O I
10.1039/c3nr03272h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (similar to 5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.
引用
收藏
页码:10894 / 10900
页数:7
相关论文
共 37 条
[1]   Mixed species biofilms of Candida albicans and Staphylococcus epidermidis [J].
Adam, B ;
Baillie, GS ;
Douglas, LJ .
JOURNAL OF MEDICAL MICROBIOLOGY, 2002, 51 (04) :344-349
[2]   Force-induced formation and propagation of adhesion nanodomains in living fungal cells [J].
Alsteens, David ;
Garcia, Melissa C. ;
Lipke, Peter N. ;
Dufrene, Yves F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (48) :20744-20749
[3]   Unfolding Individual Als5p Adhesion Proteins on Live Cells [J].
Alsteens, David ;
Dupres, Vincent ;
Klotz, Stephen A. ;
Gaur, Nand K. ;
Lipke, Peter N. ;
Dufrene, Yves F. .
ACS NANO, 2009, 3 (07) :1677-1682
[4]   Single-Cell Force Spectroscopy of Probiotic Bacteria [J].
Beaussart, Audrey ;
El-Kirat-Chatel, Sofiane ;
Herman, Philippe ;
Alsteens, David ;
Mahillon, Jacques ;
Hols, Pascal ;
Dufrene, Yves F. .
BIOPHYSICAL JOURNAL, 2013, 104 (09) :1886-1892
[5]   Single-Molecule Imaging and Functional Analysis of Als Adhesins and Mannans during Candida albicans Morphogenesis [J].
Beaussart, Audrey ;
Alsteens, David ;
El-Kirat-Chatel, Sofiane ;
Lipke, Peter N. ;
Kucharikova, Sona ;
Van Dijck, Patrick ;
Dufrene, Yves F. .
ACS NANO, 2012, 6 (12) :10950-10964
[6]   Discrete interactions in cell adhesion measured by single-molecule force spectroscopy [J].
Benoit, M ;
Gabriel, D ;
Gerisch, G ;
Gaub, HE .
NATURE CELL BIOLOGY, 2000, 2 (06) :313-317
[7]   Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa [J].
Brand, Alexandra ;
Barnes, Julia D. ;
Mackenzie, Kevin S. ;
Odds, Frank C. ;
Gow, Neil A. R. .
FEMS MICROBIOLOGY LETTERS, 2008, 287 (01) :48-55
[8]   Single-cell microbiology: Tools, technologies, and applications [J].
Brehm-Stecher, BF ;
Johnson, EA .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (03) :538-+
[10]  
Chatterjee B., 2011, TRIBOL IND, V33, P164