The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data

被引:238
作者
Kasper, Lars [1 ,2 ,3 ,4 ]
Bollmann, Steffen [5 ]
Diaconescu, Andreea O. [1 ,2 ]
Hutton, Chloe [6 ]
Heinzle, Jakob [1 ,2 ]
Iglesias, Sandra [1 ,2 ]
Hauser, Tobias U. [6 ,7 ]
Sebold, Miriam [8 ]
Manjaly, Zina-Mary [9 ]
Pruessmann, Klaas P. [3 ,4 ]
Stephan, Klaas E. [1 ,2 ,6 ,10 ]
机构
[1] Univ Zurich, Inst Biomed Engn, TNU, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[2] ETH, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[3] ETH, Inst Biomed Engn, Gloriastr 35, CH-8092 Zurich, Switzerland
[4] Univ Zurich, Gloriastr 35, CH-8092 Zurich, Switzerland
[5] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld 4072, Australia
[6] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[7] Max Planck Univ Coll London, Ctr Computat Psychiat & Ageing Res, London WC1B 5EH, England
[8] Charite, Dept Psychiat & Psychotherapy, Campus Mitte, D-10117 Berlin, Germany
[9] Schulthess Clin, Dept Neurol, CH-8008 Zurich, Switzerland
[10] Max Planck Inst Metab Res, D-50931 Cologne, Germany
基金
瑞士国家科学基金会;
关键词
Physiological noise correction fMRI; RETROICOR; RVHRCOR; Heart rate; Respiratory volume; SPM toolbox; fMRI preprocessing; MEDIAL PREFRONTAL CORTEX; RESTING-STATE FMRI; DECISION-MAKING; HEART-RATE; BOLD; BRAIN; ACQUISITION; SIGNAL; FLUCTUATIONS; RESPIRATION;
D O I
10.1016/j.jneumeth.2016.10.019
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Physiological noise is one of the major confounds for fMRI. A common class of correction methods model noise from peripheral measures, such as ECGs or pneumatic belts. However, physiological noise correction has not emerged as a standard preprocessing step for fMRI data yet due to: (1) the varying data quality of physiological recordings, (2) non-standardized peripheral data formats and (3) the lack of full automatization of processing and modeling physiology, required for large-cohort studies. New methods: We introduce the PhysIO Toolbox for preprocessing of physiological recordings and model based noise correction. It implements a variety of noise models, such as RETROICOR, respiratory volume per time and heart rate variability responses (RVT/HRV). The toolbox covers all intermediate steps from flexible read-in of data formats to GLM regressor/contrast creation without any manual intervention. Results: We demonstrate the workflow of the toolbox and its functionality for datasets from different vendors, recording devices, field strengths and subject populations. Automatization of physiological noise correction and performance evaluation are reported in a group study (N=35). Comparison with existing methods: The PhysIO Toolbox reproduces physiological noise patterns and correction efficacy of previously implemented noise models. It increases modeling robustness by outperforming vendor-provided peak detection methods for physiological cycles. Finally, the toolbox offers an integrated framework with full automatization, including performance monitoring, and flexibility with respect to the input data. Conclusions: Through its platform-independent Matlab implementation, open-source distribution, and modular structure, the PhysIO Toolbox renders physiological noise correction an accessible preprocessing step for fMRI data. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 68 条
[1]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[2]   Advances in functional magnetic resonance imaging of the human brainstem [J].
Beissner, Florian ;
Schumann, Andy ;
Brunn, Franziska ;
Eisentraeger, Daniela ;
Baer, Karl-Juergen .
NEUROIMAGE, 2014, 86 :91-98
[3]  
Bianciardi M., 2013, HUM BRAIN MAPP
[4]   Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study [J].
Bianciardi, Marta ;
Fukunaga, Masaki ;
van Gelderen, Peter ;
Horovitz, Silvina G. ;
de Zwart, Jacco A. ;
Shmueli, Karin ;
Duyn, Jeff H. .
MAGNETIC RESONANCE IMAGING, 2009, 27 (08) :1019-1029
[5]   The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration [J].
Birn, Rasmus M. ;
Smith, Monica A. ;
Jones, Tyler B. ;
Bandettini, Peter A. .
NEUROIMAGE, 2008, 40 (02) :644-654
[6]   The role of physiological noise in resting-state functional connectivity [J].
Birn, Rasmus M. .
NEUROIMAGE, 2012, 62 (02) :864-870
[7]   Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI [J].
Birn, RM ;
Diamond, JB ;
Smith, MA ;
Bandettini, PA .
NEUROIMAGE, 2006, 31 (04) :1536-1548
[8]  
Bollmann S., 2014, P INT SOC MAG RESON, P4145
[9]  
Bollmann S., 2014, THESIS
[10]   Physiological noise modelling for spinal functional magnetic resonance imaging studies [J].
Brooks, Jonathan C. W. ;
Beckmann, Christian F. ;
Miller, Karla L. ;
Wise, Richard G. ;
Porro, Carlo A. ;
Tracey, Irene ;
Jenkinson, Mark .
NEUROIMAGE, 2008, 39 (02) :680-692