Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces

被引:12
作者
Jung, Jong Soo [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
Viscosity approximation method; Composite iterative scheme; Accretive operator; Resolvent; Zeros; Nonexpansive mappings; Fixed points; Variational inequalities; Weakly sequentially continuous duality mapping; Uniformly Gateaux differentiable norm; FIXED-POINT PROBLEMS; NONEXPANSIVE-MAPPINGS; EXTRAGRADIENT METHOD; MONOTONE-OPERATORS; INFINITE PRODUCTS; THEOREMS; FAMILY; RESOLVENTS; ISHIKAWA; ERRORS;
D O I
10.1016/j.na.2009.06.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a composite iterative scheme by viscosity approximation method for finding a zero of an accretive operator in Banach spaces. Then, we establish strong convergence theorems for the composite iterative scheme. The main theorems improve and generalize the recent corresponding results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415-424] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators,J. Math. Anal. Appl. 314 (2006) 631-643] as well as Aoyama et al. [K. Aoyama, Y Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350-2360], Benavides et al. [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248-249 (2003) 62-71], Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and m-accretive operators, Fixed Point Theory and Appl. 2006 (2006) 1-10] and Kamimura and Takahashi [S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilberts spaces, J. Approx. Theory 106 (2000) 226-240]. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 33 条
[1]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[2]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[3]   Iterative solutions for zeros of accretive operators [J].
Benavides, TD ;
López-Acedo, G ;
Xu, HK .
MATHEMATISCHE NACHRICHTEN, 2003, 248 :62-71
[4]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[5]   An implicit iterative scheme for monotone variational inequalities and fixed point problems [J].
Ceng, L. C. ;
Cubiotti, R. ;
Yaoc, J. C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2445-2457
[6]  
Ceng LC, 2008, TAIWAN J MATH, V12, P487
[7]   Strong convergence theorems for finitely many nonexpansive mappings and applications [J].
Ceng, L. C. ;
Cubiotti, P. ;
Yao, J. C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) :1464-1473
[8]   Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces [J].
Ceng, L. -C. ;
Khan, A. R. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (05) :1830-1840
[9]   Relaxed viscosity approximation methods for fixed point problems and variational inequality problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3299-3309
[10]  
CHEN R, 2006, FIXED POINT THEORY A, P1