Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

被引:8
作者
Dencker, Peter [1 ]
Erb, Wolfgang [2 ]
机构
[1] Univ Lubeck, Inst Math, Lubeck, Germany
[2] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
关键词
Multivariate polynomial interpolation; Multivariate Lissajous curves; Lissajous-Chebyshev node points; Quadrature rules; BIVARIATE LAGRANGE INTERPOLATION; PADUA POINTS; IDEAL THEORY; VARIABLES; HYPERINTERPOLATION;
D O I
10.1016/j.jat.2017.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets related to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes linked to these curves, we derive a discrete orthogonality structure on these node sets. Using this orthogonality structure, we obtain unique polynomial interpolation in appropriately defined spaces of multivariate Chebyshev polynomials. Our results generalize corresponding interpolation and quadrature results for the Chebyshev-Gau beta-Lobatto points in dimension one and the Padua points in dimension two. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 45
页数:31
相关论文
共 30 条
[1]  
Bogle M G V., 1994, Journal of Knot Theory and Its Ramifications, V3, P121, DOI DOI 10.1142/S0218216594000095
[2]   Trivariate polynomial approximation on Lissajous curves [J].
Bos, L. ;
De Marchi, S. ;
Vianello, M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) :519-541
[3]   Bivariate Lagrange interpolation at the Padua points: the ideal theory approach [J].
Bos, Len ;
De Marchi, Stefano ;
Vianello, Marco ;
Xu, Yuan .
NUMERISCHE MATHEMATIK, 2007, 108 (01) :43-57
[4]   Bivariate Lagrange interpolation at the Padua points: The generating curve approach [J].
Bos, Len ;
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco ;
Xu, Yuan .
JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) :15-25
[5]  
Braun W., 1875, THESIS
[6]   Bivariate polynomial interpolation on the square at new nodal sets [J].
Caliari, M ;
De Marchi, S ;
Vianello, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) :261-274
[7]   Bivariate Lagrange interpolation at the Padua points: Computational aspects [J].
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) :284-292
[8]   Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave [J].
Caliari, Marco ;
De Marchi, Stefano ;
Sommariva, Alvise ;
Vianello, Marco .
NUMERICAL ALGORITHMS, 2011, 56 (01) :45-60
[9]  
Cools R., 2012, SPRINGER P MATH STAT, V23, P639
[10]   Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function [J].
Cools, Ronald ;
Poppe, Koen .
BIT NUMERICAL MATHEMATICS, 2011, 51 (02) :275-288