A Description of Ad-nilpotent Elements in Semiprime Rings with Involution

被引:3
|
作者
Brox, Jose [1 ]
Garcia, Esther [2 ]
Lozano, Miguel Gomez [3 ]
Alcazar, Ruben Munoz [2 ]
de Salas, Guillermo Vera [2 ]
机构
[1] Univ Coimbra, CMC, Dept Math, P-3004504 Coimbra, Portugal
[2] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Mostoles 28933, Madrid, Spain
[3] Univ Malaga, Dept Algebra Geometria & Topol, Malaga 29071, Spain
关键词
Ad-nilpotent element; Semiprime ring; Lie algebra; Skew-symmetric elements; LIE MAP CONJECTURES; PRIME-RINGS; DERIVATIONS; IDEALS;
D O I
10.1007/s40840-020-01064-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study ad-nilpotent elements in Lie algebras arising from semiprime associative rings R free of 2-torsion. With the idea of keeping under control the torsion of R, we introduce a more restrictive notion of ad-nilpotent element, pure ad-nilpotent element, which is a only technical condition since every ad-nilpotent element can be expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing indices. This allows us to be more precise when setting the torsion inside the ring R in order to describe its ad-nilpotent elements. If R is a semiprime ring and a is an element of R is a pure ad-nilpotent element of R of index n with R free of t and ((n)(t))-torsion for t = [n+1/2], then n is odd and there exists lambda is an element of C(R) such that a - lambda is nilpotent of index t. If R is a semiprime ring with involution * and a is a pure ad-nilpotent element of Skew(R,*) free of t and ((n)(t))-torsion for t=[n+1/2], then either a is an ad-nilpotent element of R of the same index n (this may occur if n degrees 1,3(mod4)) or R is a nilpotent element of R of index t+1, and R satisfies a nontrivial GPI (this may occur if n degrees 0,3(mod4)). The case n degrees 2(mod4) is not possible.
引用
收藏
页码:2577 / 2602
页数:26
相关论文
共 50 条
  • [1] A Description of Ad-nilpotent Elements in Semiprime Rings with Involution
    Jose Brox
    Esther García
    Miguel Gómez Lozano
    Rubén Muñoz Alcázar
    Guillermo Vera de Salas
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2577 - 2602
  • [2] Ad-nilpotent Elements of Semiprime Rings with Involution
    Lee, Tsiu-Kwen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (02): : 318 - 327
  • [3] Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution
    Jose Brox
    Esther García
    Miguel Gómez Lozano
    Rubén Muñoz Alcázar
    Guillermo Vera de Salas
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 631 - 646
  • [4] Ad-Nilpotent Elements of Skew Index in Semiprime Rings with Involution
    Brox, Jose
    Garcia, Esther
    Gomez Lozano, Miguel
    Munoz Alcazar, Ruben
    Vera de Salas, Guillermo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 631 - 646
  • [5] On the existence of ad-nilpotent elements
    Béré C.J.A.
    Ouedraogo M.F.
    Pilabré N.B.
    Afrika Matematika, 2015, 26 (5-6) : 813 - 823
  • [6] EXISTENCE OF AD-NILPOTENT ELEMENTS
    BENKART, GM
    ISAACS, IM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (01) : 30 - 40
  • [7] Jordan algebras at Jordan elements of semiprime rings with involution
    Brox, Jose
    Garcia, Esther
    Gomez Lozano, Miguel
    JOURNAL OF ALGEBRA, 2016, 468 : 155 - 181
  • [8] INNER IDEALS AND AD-NILPOTENT ELEMENTS OF LIE-ALGEBRAS
    BENKART, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 232 (SEP) : 61 - 81
  • [9] INNER IDEALS AND AD-NILPOTENT ELEMENTS OF LIE-ALGEBRAS
    BENKART, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A96 - A97
  • [10] Normalizers of ad-nilpotent ideals
    Panyushev, DI
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (02) : 153 - 178