Heat-kernel estimates for random walk among random conductances with heavy tail

被引:14
|
作者
Boukhadra, Omar [1 ,2 ]
机构
[1] Univ Aix Marseille 1, CMI, F-13453 Marseille 13, France
[2] UMC, Dept Math, Constantine, Algeria
关键词
Random walk; Random environments; Markov chains; Random conductances; Percolation; QUENCHED INVARIANCE-PRINCIPLES; BOUNDED RANDOM CONDUCTANCES; PERCOLATION CLUSTERS; DECAY;
D O I
10.1016/j.spa.2009.11.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study models of discrete-time, symmetric, Z(d)-valued random walks in random environments, driven by a field of i.i.d. random nearest-neighbor conductances omega(xy) is an element of [0, 1], with polynomial tail near 0 with exponent gamma > 0. We first prove for all d >= 5 that the return probability shows an anomalous decay (non- Gaussian) that approaches (up to sub-polynomial terms) a random constant times n(-2) when we push the power gamma to zero. In contrast, we prove that the heat-kernel decay is as close as we want, in a logarithmic sense, to the standard decay n(-d/2) for large values of the parameter gamma. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 194
页数:13
相关论文
共 50 条
  • [1] Anomalous heat-kernel decay for random walk among bounded random conductances
    Berger, N.
    Biskup, M.
    Hoffman, C. E.
    Kozma, G.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 374 - 392
  • [2] Standard Spectral Dimension for the Polynomial Lower Tail Random Conductances Model
    Boukhadra, Omar
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 2069 - 2086
  • [3] Large Deviations for the Local Times of a Random Walk among Random Conductances in a Growing Box
    Koenig, W.
    Wolff, T.
    MARKOV PROCESSES AND RELATED FIELDS, 2015, 21 (03) : 591 - 638
  • [4] Heat kernel estimates for strongly recurrent random walk on random media
    Kumagai, Takashi
    Misumi, Jun
    JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (04) : 910 - 935
  • [5] Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media
    Takashi Kumagai
    Jun Misumi
    Journal of Theoretical Probability, 2008, 21 : 910 - 935
  • [6] The speed of biased random walk among random conductances
    Berger, Noam
    Gantert, Nina
    Nagel, Jan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 862 - 881
  • [7] A quantitative central limit theorem for the random walk among random conductances
    Mourrat, Jean-Christophe
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 17
  • [8] Functional CLT for random walk among bounded random conductances
    Biskup, Marek
    Prescott, Timothy M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1323 - 1348
  • [9] Large deviations for the local times of a random walk among random conductances
    Koenig, Wolfgang
    Salvi, Michele
    Wolff, Tilman
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11
  • [10] Green kernel asymptotics for two-dimensional random walks under random conductances
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 14