Predicting Histopathological Findings of Gastric Cancer via Deep Generalized Multi-instance Learning

被引:0
作者
Fang, Mengjie [1 ,2 ]
Zhang, Wenjuan [3 ]
Dong, Di [1 ,2 ]
Zhou, Junlin [3 ]
Tian, Jie [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Lanzhou Univ, Dept Radiol, Hosp 2, Lanzhou 730000, Gansu, Peoples R China
来源
MEDICAL IMAGING 2019: IMAGE PROCESSING | 2019年 / 10949卷
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Multi-instance learning; Convolutional neural network; Classification; Gastric cancer; CT;
D O I
10.1117/12.2512435
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we investigate the problem of predicting the histopathological findings of gastric cancer (GC) from preoperative CT image. Unlike most existing classification systems assess the global imaging phenotype of tissues directly, we formulate the problem as a generalized multi-instance learning (GMIL) task and design a deep GMIL framework to address it. Specifically, the proposed framework aims at training a powerful convolutional neural network (CNN) which is able to discriminate the informative patches from the neighbor confusing patches and yield accurate patient-level classification. To achieve this, we firstly train a CNN for coarse patch-level classification in a GMIL manner to develop several groups which contain the informative patches for each histopathological category, the infra-tumor ambiguous patches, and the extra-tumor irrelative patches respectively. Then we modify the fully-connected layer to introduce the latter two classes of patches and retrain the CNN model. In the inference stage, patient-level classification is implemented based on the group of candidate informative patches automatically recognized by the model. To evaluate the performance and generalizability of our approach, we successively apply it to predict two kinds of histopathological findings (differentiation degree [two categories] and Lauren classification [three categories]) on a dataset including 433 GC patients with venous phase contrast-enhanced CT scans. Experimental results reveal that our deep GMIL model has a powerful predictive ability with accuracies of 0.815 and 0.731 in the two applications respectively, and it significantly outperforms the standard CNN model and the traditional texture-based model (more than 14% and 17% accuracy increase).
引用
收藏
页数:6
相关论文
共 11 条
[1]   LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results [J].
Cheng, Sainan ;
Fang, Mengjie ;
Cui, Chen ;
Chen, Xiuyu ;
Yin, Gang ;
Prasad, Sanjay K. ;
Dong, Di ;
Tian, Jie ;
Zhao, Shihua .
EUROPEAN RADIOLOGY, 2018, 28 (11) :4615-4624
[2]   Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule [J].
Fan, Li ;
Fang, MengJie ;
Li, ZhaoBin ;
Tu, WenTing ;
Wang, ShengPing ;
Chen, WuFei ;
Tian, Jie ;
Dong, Di ;
Liu, ShiYuan .
EUROPEAN RADIOLOGY, 2019, 29 (02) :889-897
[3]   The Global Burden of Cancer 2013 Global Burden of Disease Cancer Collaboration [J].
Fitzmaurice, Christina ;
Dicker, Daniel ;
Pain, Amanda ;
Hamavid, Hannah ;
Moradi-Lakeh, Maziar ;
Maclntyre, Michael F. ;
Allen, Christine ;
Hansen, Gillian ;
Woodbrook, Rachel ;
Wolfe, Charles ;
Hamadeh, Randah R. ;
Moore, Ami ;
Werdecker, Andrea ;
Gessner, Bradford D. ;
Te Ao, Braden ;
McMahon, Brian ;
Karimkhani, Chante ;
Yu, Chuanhua ;
Cooke, Graham S. ;
Schwebel, David C. ;
Carpenter, David O. ;
Pereira, David M. ;
Nash, Denis ;
Kazi, Dhruv S. ;
De Leo, Diego ;
Plass, Dietrich ;
Ukwaja, Kingsley N. ;
Thurston, George D. ;
Jin, Kim Yun ;
Simard, Edgar P. ;
Mills, Edward ;
Park, Eun-Kee ;
Catala-Lopez, Ferran ;
DeVeber, Gabrielle ;
Gotay, Carolyn ;
Khan, Gulfaraz ;
Hosgood, H. Dean, III ;
Santos, Itamar S. ;
Leasher, Janet L. ;
Singh, Jasvinder ;
Leigh, James ;
Jonas, Jost B. ;
Sanabria, Juan ;
Beardsley, Justin ;
Jacobsen, Kathryn H. ;
Takahashi, Ken ;
Franklin, Richard C. ;
Ronfani, Luca ;
Montico, Marcella ;
Naldi, Luigi .
JAMA ONCOLOGY, 2015, 1 (04) :505-527
[4]  
Hering J, 2018, P SPIE MED IMAGING 2
[5]   Artificial intelligence in radiology [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Quackenbush, John ;
Schwartz, Lawrence H. ;
Aerts, Hugo J. W. L. .
NATURE REVIEWS CANCER, 2018, 18 (08) :500-510
[6]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[7]   Application of CT texture analysis in predicting histopathological characteristics of gastric cancers [J].
Liu, Shunli ;
Liu, Song ;
Ji, Changfeng ;
Zheng, Huanhuan ;
Pan, Xia ;
Zhang, Yujuan ;
Guan, Wenxian ;
Chen, Ling ;
Guan, Yue ;
Li, Weifeng ;
He, Jian ;
Ge, Yun ;
Zhou, Zhengyang .
EUROPEAN RADIOLOGY, 2017, 27 (12) :4951-4959
[8]   Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China [J].
Qiu, Miao-zhen ;
Cai, Mu-yan ;
Zhang, Dong-sheng ;
Wang, Zhi-qiang ;
Wang, De-shen ;
Li, Yu-hong ;
Xu, Rui-hua .
JOURNAL OF TRANSLATIONAL MEDICINE, 2013, 11
[9]   Histopathologic diversity of gastric cancers: Relationship between enhancement pattern on dynamic contrast-enhanced CT and histological type [J].
Tsurumaru, Daisuke ;
Miyasaka, Mitsutoshi ;
Muraki, Toshio ;
Nishie, Akihiro ;
Asayama, Yoshiki ;
Oki, Eiji ;
Oda, Yoshinao ;
Honda, Hiroshi .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 97 :90-95
[10]   Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition [J].
Yan, Zhennan ;
Zhan, Yiqiang ;
Peng, Zhigang ;
Liao, Shu ;
Shinagawa, Yoshihisa ;
Zhang, Shaoting ;
Metaxas, Dimitris N. ;
Zhou, Xiang Sean .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1332-1343