Sizing up the genomic footprint of endosymbiosis

被引:33
作者
Elias, Marek [2 ]
Archibald, John M. [1 ]
机构
[1] Dalhousie Univ, Canadian Inst Adv Res, Integrated Microbial Biodivers Program, Dept Biochem & Mol Biol, Halifax, NS B3H 1X5, Canada
[2] Charles Univ Prague, Dept Bot, Fac Sci, Prague, Czech Republic
基金
加拿大健康研究院;
关键词
endosymbiosis; endosymbiotic gene transfer; evolution; genomics; organelles; plastids; HORIZONTAL GENE-TRANSFER; PLASTID EVOLUTION; NUCLEAR GENOMES; ALGAL GENES; CYANOBACTERIAL CONTRIBUTION; PHOTOSYNTHETIC EUKARYOTES; SECONDARY ENDOSYMBIOSIS; PROTEIN IMPORT; DIATOM GENOMES; CHLOROPHYLL-C;
D O I
10.1002/bies.200900117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A flurry of recent publications have challenged consensus views on the tempo and mode of plastid (chloroplast) evolution in eukaryotes and, more generally, the impact of endosymbiosis in the evolution of the nuclear genome. Endosymbiont-to-nucleus gene transfer is an essential component of the transition from endosymbiont to organelle, but the sheer diversity of algal-derived genes in photosynthetic organisms such as diatoms, as well as the existence of genes of putative plastid ancestry in the nuclear genomes of plastid-lacking eukaryotes such as ciliates and choanoflagellates, defy simple explanation. Collectively, these papers underscore the power of comparative genomics and, at the same time, reveal how little we know with certainty about the earliest stages of the evolution of photosynthetic eukaryotes.
引用
收藏
页码:1273 / 1279
页数:7
相关论文
共 78 条
[31]  
KIM E, 2009, CHLOROPLAST INTERACT
[32]   EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata [J].
Kim, Eunsoo ;
Graham, Linda E. .
PLOS ONE, 2008, 3 (07)
[33]   The eukaryotic tree of life: endosymbiosis takes its TOL [J].
Lane, Christopher E. ;
Archibald, John M. .
TRENDS IN ECOLOGY & EVOLUTION, 2008, 23 (05) :268-275
[34]   Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates [J].
Li, SL ;
Nosenko, T ;
Hackett, JD ;
Bhattacharya, D .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (03) :663-674
[35]  
MARGULLS L, 1970, ORIGIN EUKARYOTIC CE
[36]   Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus [J].
Martin, W ;
Rujan, T ;
Richly, E ;
Hansen, A ;
Cornelsen, S ;
Lins, T ;
Leister, D ;
Stoebe, B ;
Hasegawa, M ;
Penny, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12246-12251
[37]   EVIDENCE FOR A CHIMERIC NATURE OF NUCLEAR GENOMES - EUBACTERIAL ORIGIN OF EUKARYOTIC GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE GENES [J].
MARTIN, W ;
BRINKMANN, H ;
SAVONNA, C ;
CERFF, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (18) :8692-8696
[38]   Cyanobacterial contribution to the genomes of the plastid-lacking protists [J].
Maruyama, Shinichiro ;
Matsuzaki, Motomichi ;
Misawa, Kazuharu ;
Nozaki, Hisayoshi .
BMC EVOLUTIONARY BIOLOGY, 2009, 9
[39]  
Mereschkowsky C., 1905, Biologisches Centralblatt, V25, P593
[40]   Evolutionary position of breviate amoebae and the primary eukaryote divergence [J].
Minge, Marianne A. ;
Silberman, Jeffrey D. ;
Orr, Russell J. S. ;
Cavalier-Smith, Thomas ;
Shalchian-Tabrizi, Kamran ;
Burki, Fabien ;
Skjaeveland, Asmund ;
Jakobsen, Kjetill S. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 276 (1657) :597-604