A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrodinger equation

被引:88
作者
Anastassi, Z. A. [1 ]
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Dept Comp Sci & Technol, Fac Sci & Technol, Tripolis 22100, Greece
基金
英国科研创新办公室;
关键词
trigonometrical-fitting; exponential-fitting; Schrodinger equation; Runge-Kutta; explicit methods; exponential order;
D O I
10.1007/s10910-006-9071-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have constructed three Runge-Kutta methods based on a classical method of Fehlberg with eight stages and sixth algebraic order. These methods have exponential order one, two and three. We show through the error analysis of the methods that by increasing the exponential order, the maximum power of the energy in the error expression decreases. So the higher the exponential order the smaller the local truncation error of the method compared to the corresponding classical method. The difference is higher for higher values of energy. The results confirm this, when integrating the resonance problem of the one-dimensional time-independent Schrodinger equation.
引用
收藏
页码:79 / 100
页数:22
相关论文
共 34 条
[1]   Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) :281-293
[2]  
[Anonymous], APPL NUM ANAL COMP M
[3]   Embedded eighth order methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (04) :327-341
[4]   New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrodinger equation [J].
Avdelas, G ;
Kefalidis, E ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (04) :371-404
[5]   A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation. Part 2. Development of the generator; optimization of the generator and numerical results [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (04) :293-305
[6]   A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation. Part 1. Development of the basic method [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (04) :281-291
[7]  
ENGELNMULLGES G, 1996, NUMER ALGORITHMS, P423
[8]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[9]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[10]   Numerical solution of the two-dimensional time independent Schrodinger equation with Numerov-type methods [J].
Kalogiratou, Z ;
Monovasilis, T ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) :271-279