The vitamin K-dependent carboxylase (Reprinted from vol 130, pg 1877, 2000)

被引:0
|
作者
Berkner, KL [1 ]
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44195 USA
来源
JOURNAL OF NUTRITION | 2002年 / 132卷 / 12期
关键词
vitamin K; vitamin K-dependent carboxylase;
D O I
暂无
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
The carboxylase is an integral membrane glycoprotein that uses vitamin K to modify clusters of glutamyl residues (glu's) to gamma-carboxylated glutamyl residues (gla's) post-translationally in vitamin K-dependent (VKD) proteins as they pass through the endoplasmic reticulum. Carboxylation is required for VKD protein functions in hemostasis, bone metabolism, growth control and signal transduction. Carboxylation of multiple glu residues is accomplished via a processive mechanism, which occurs with at least some order and involves carboxylation of the carboxylase. The carboxylase has a high affinity binding site for VKD proteins, which in most cases is a VKD propeptide sequence; it also appears to have a low affinity site for those glu's undergoing catalysis. The propeptide activates binding of the glu's; together, the two contact points between the carboxylase and VKD protein increase the affinity of the carboxylase for vitamin K. Biochemical mapping to identify where these events occur in the carboxylase remains a challenge, despite the availability of recombinant protein. The affinity of the carboxylase for the propeptide of several VKD proteins that are coexpressed in liver varies over a 100-fold range. Treatment with anticoagulants such as warfarin that indirectly block carboxylation likely decreases the rate of VKD protein catalysis and increases the accumulation of VKD precursors, leading to a competitive state among these proteins, which results in the premature dissociation of undercarboxylated, inactive protein.
引用
收藏
页码:1877 / 1880
页数:4
相关论文
共 50 条