DEEP JOINT SOURCE-CHANNEL CODING OF IMAGES WITH FEEDBACK

被引:0
|
作者
Kurka, David Burth [1 ]
Gunduz, Deniz [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
欧洲研究理事会;
关键词
Deep neural networks; Feedback; Joint source-channel coding; Wireless image transmission; VECTOR QUANTIZATION; RATE-DISTORTION; COMMUNICATION;
D O I
10.1109/icassp40776.2020.9054216
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We consider wireless transmission of images in the presence of channel output feedback, by introducing an autoencoder-based deep joint source-channel coding (JSCC) scheme. We achieve impressive results in terms of the end-to-end reconstruction quality for fixed length transmission, and in terms of the average delay for variable length transmission. To the best of our knowledge, this is the first practical JSCC scheme that can fully exploit channel output feedback, demonstrating yet another setting in which modern machine learning techniques can enable the design of new and efficient communication methods that surpass the performance of traditional structured coding schemes.
引用
收藏
页码:5235 / 5239
页数:5
相关论文
共 50 条
  • [1] DeepJSCC-F: Deep joint source-channel coding of images with feedback
    Kurka D.B.
    Gündüz D.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (01): : 178 - 193
  • [2] Joint Source-Channel Coding With Feedback
    Kostina, Victoria
    Polyanskiy, Yury
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (06) : 3502 - 3515
  • [3] Joint source-channel coding with feedback
    Kostina, Victoria
    Polyanskiy, Yury
    Verdu, Sergio
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 276 - 280
  • [4] DEEP JOINT SOURCE-CHANNEL CODING FOR WIRELESS IMAGE TRANSMISSION
    Bourtsoulatze, Eirina
    Kurka, David Burth
    Gunduz, Deniz
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4774 - 4778
  • [5] Deep Joint Source-Channel Coding for Wireless Image Transmission
    Bourtsoulatze, Eirina
    Kurka, David Burth
    Gunduz, Deniz
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2019, 5 (03) : 567 - 579
  • [6] DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding
    Tung T.-Y.
    Kurka D.B.
    Jankowski M.
    Gunduz D.
    IEEE Journal on Selected Areas in Information Theory, 2022, 3 (04): : 720 - 731
  • [7] DEEP LEARNING FOR JOINT SOURCE-CHANNEL CODING OF TEXT
    Farsad, Nariman
    Rao, Milind
    Goldsmith, Andrea
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2326 - 2330
  • [8] Distributed Deep Joint Source-Channel Coding over a Multiple Access Channel
    Yilmaz, Selim F.
    Karamanli, Can
    Gunduz, Deniz
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1400 - 1405
  • [9] DeepJS']JSCC-Q: Channel Input Constrained Deep Joint Source-Channel Coding
    Tung, Tze-Yang
    Kurka, David Burth
    Jankowski, Mikolaj
    Gunduz, Deniz
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3880 - 3885
  • [10] DISTRIBUTED IMAGE TRANSMISSION USING DEEP JOINT SOURCE-CHANNEL CODING
    Wang, Sixian
    Yang, Ke
    Dai, Jincheng
    Niu, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5208 - 5212