Assessment of ensemble-based chemical data assimilation in an idealized setting

被引:41
作者
Constantinescu, Emil M. [1 ]
Sandu, Adrian
Chai, Tianfeng
Carmichael, Gregory R.
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52240 USA
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
data assimilation; ensemble Kalman filter; chemical and transport models; atmospheric models;
D O I
10.1016/j.atmosenv.2006.08.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data assimilation is the process of integrating observational data and model predictions to obtain an optimal representation of the state of the atmosphere. As more chemical observations in the troposphere are becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting, similar to the role it has in numerical weather prediction (NWP). Considerable progress has been made recently in the development of variational tools for chemical data assimilation. In this paper, we assess the performance of the ensemble Kalman filter (EnKF). Results in an idealized setting show that EnKF is promising for chemical data assimilation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 36
页数:19
相关论文
共 59 条
[1]  
AKSOY A, 2005, J GEOPHYS RES, P110
[2]   Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter [J].
Annan, JD ;
Hargreaves, JC ;
Edwards, NR ;
Marsh, R .
OCEAN MODELLING, 2005, 8 (1-2) :135-154
[3]  
BARKMAN A, 1999, ENV GEOGRAPHICAL MOD, V3, P125
[4]   Singular vectors and estimates of the analysis-error covariance metric [J].
Barkmeijer, J ;
Van Gijzen, M ;
Bouttier, F .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (549) :1695-1713
[5]   Three-dimensional ozone analyses and their use for short-term ozone forecasts [J].
Blond, N ;
Vautard, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D17) :D173031-14
[6]   Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting [J].
Buehner, M .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) :1013-1043
[7]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[8]  
2
[9]  
Carmichael G. R., 2003, J GEOPHYS RES, V108, P10649
[10]  
Carter W. P. L., 2000, IMPLEMENTATION SAPRC