Sections, selections and Prohorov's theorem

被引:3
|
作者
Gutev, Valentin [2 ]
Valov, Vesko [1 ]
机构
[1] Nipissing Univ, Dept Math & Comp Sci, N Bay, ON P1B 8L7, Canada
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Set-valued mapping; Lower semi-continuous; Upper semi-continuous; Selection; Section; Radon probability measure; SPACES;
D O I
10.1016/j.jmaa.2009.06.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous Prohorov theorem for Radon probability measures is generalized in terms of usco mappings. in the case of completely metrizable spaces this is achieved by applying a classical Michael result on the existence of usco selections for I.s.c. mappings. A similar approach works when sieve-complete spaces are considered. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 379
页数:3
相关论文
共 50 条
  • [31] Convergence of Newton's Method for Sections on Riemannian Manifolds
    Wang, J. H.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (01) : 125 - 145
  • [32] Convergence of Newton’s Method for Sections on Riemannian Manifolds
    J. H. Wang
    Journal of Optimization Theory and Applications, 2011, 148 : 125 - 145
  • [33] Continuous images of arcs: Extensions of Cornette's Theorem
    Daniel, D.
    Nikiel, J.
    Treybig, L. B.
    Tuncali, M.
    Tymchatyn, E. D.
    TOPOLOGY AND ITS APPLICATIONS, 2015, 195 : 63 - 69
  • [34] WIENER'S INVERSION THEOREM FOR A CERTAIN CLASS OF *-ALGEBRAS
    Blendek, Tobias
    COLLOQUIUM MATHEMATICUM, 2014, 137 (01) : 103 - 116
  • [35] Around Browder's fixed point theorem for contractions
    Jachymski, Jacek
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (01) : 47 - 61
  • [36] Pure quotients and Morita's theorem for kω-spaces
    Lazar, Aldo J.
    Somerset, Douglas W. B.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 582 - 597
  • [37] The Randomized Dvoretzky's Theorem in l∞n and the χ-Distribution
    Tikhomirov, Konstantin E.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 455 - 463
  • [38] Refinements of Milnor's fibration theorem for complex singularities
    Cisneros-Molina, J. L.
    Seade, J.
    Snoussi, J.
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 937 - 970
  • [39] Berge's maximum theorem for noncompact image sets
    Feinberg, Eugene A.
    Kasyanov, Pavlo O.
    Voorneveld, Mark
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 1040 - 1046
  • [40] Tarski monoids: Matui's spatial realization theorem
    Lawson, Mark V.
    SEMIGROUP FORUM, 2017, 95 (02) : 379 - 404