Sections, selections and Prohorov's theorem

被引:3
作者
Gutev, Valentin [2 ]
Valov, Vesko [1 ]
机构
[1] Nipissing Univ, Dept Math & Comp Sci, N Bay, ON P1B 8L7, Canada
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Set-valued mapping; Lower semi-continuous; Upper semi-continuous; Selection; Section; Radon probability measure; SPACES;
D O I
10.1016/j.jmaa.2009.06.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous Prohorov theorem for Radon probability measures is generalized in terms of usco mappings. in the case of completely metrizable spaces this is achieved by applying a classical Michael result on the existence of usco selections for I.s.c. mappings. A similar approach works when sieve-complete spaces are considered. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 379
页数:3
相关论文
共 15 条
[1]  
Banakh T., 1995, Matematychni Studii, V5, P65
[2]  
BOUZIAD A, 2001, COMMUNICATION NOV
[3]  
Chaber J., 1974, FUND MATH, V84, P107
[4]   Mappings and Prohorov spaces [J].
Choban, MM .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (13) :2320-2350
[5]   Completeness, sections and selections [J].
Gutev, Valentin .
SET-VALUED ANALYSIS, 2007, 15 (03) :275-295
[6]  
Hausdorff F., 1914, Grundzuge der mengenlehre
[7]  
KURATOWSKI K, 1935, FUND MATH, V42, P114
[8]   A THEOREM ON SEMI-CONTINUOUS SET-VALUED FUNCTIONS [J].
MICHAEL, E .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) :647-651
[9]   COMPLETE SPACES AND TRI-QUOTIENT MAPS [J].
MICHAEL, E .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :716-733
[10]   CONTINUOUS SELECTIONS .1. [J].
MICHAEL, E .
ANNALS OF MATHEMATICS, 1956, 63 (02) :361-382