Evidence for a strain-tuned topological phase transition in ZrTe5

被引:116
|
作者
Mutch, Joshua [1 ]
Chen, Wei-Chih [2 ]
Went, Preston [1 ]
Qian, Tiema [1 ]
Wilson, Ilham Zaky [1 ]
Andreev, Anton [1 ]
Chen, Cheng-Chien [2 ]
Chu, Jiun-Haw [1 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA
关键词
DIRAC FERMIONS; T-C; INVERSION; TRANSPORT;
D O I
10.1126/sciadv.aav9771
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A phase transition between topologically distinct insulating phases involves closing and reopening the bandgap. Near the topological phase transition, the bulk energy spectrum is characterized by a massive Dirac dispersion, where the bandgap plays the role of mass. We report measurements of strain dependence of electrical transport properties of ZrTe5, which is known to host massive Dirac fermions in the bulk due to its proximity to a topological phase transition. We observe that the resistivity exhibits a pronounced minimum at a critical strain. We further find that the positive longitudinal magnetoconductance becomes maximal at the critical strain. This nonmonotonic strain dependence is consistent with the switching of sign of the Dirac mass and, hence, a strain-tuned topological phase transition in ZrTe5.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Strain-tuned topological phase transition and unconventional Zeeman effect in ZrTe5 microcrystals
    Apurva Gaikwad
    Song Sun
    Peipei Wang
    Liyuan Zhang
    Jennifer Cano
    Xi Dai
    Xu Du
    Communications Materials, 3
  • [2] Strain-tuned topological phase transition and unconventional Zeeman effect in ZrTe5 microcrystals
    Gaikwad, Apurva
    Sun, Song
    Wang, Peipei
    Zhang, Liyuan
    Cano, Jennifer
    Dai, Xi
    Du, Xu
    COMMUNICATIONS MATERIALS, 2022, 3 (01)
  • [3] Evidence for a Strong Topological Insulator Phase in ZrTe5
    Manzoni, G.
    Gragnaniello, L.
    Autes, G.
    Kuhn, T.
    Sterzi, A.
    Cilento, F.
    Zacchigna, M.
    Enenkel, V.
    Vobornik, I.
    Barba, L.
    Bisti, F.
    Bugnon, Ph.
    Magrez, A.
    Strocov, V. N.
    Berger, H.
    Yazyev, O. V.
    Fonin, M.
    Parmigiani, F.
    Crepaldi, A.
    PHYSICAL REVIEW LETTERS, 2016, 117 (23)
  • [4] Signature of pressure-induced topological phase transition in ZrTe5
    Kovacs-Krausz, Zoltan
    Nagy, Daniel
    Marffy, Albin
    Karpiak, Bogdan
    Tajkov, Zoltan
    Oroszlany, Laszlo
    Koltai, Janos
    Nemes-Incze, Peter
    Dash, Saroj P.
    Makk, Peter
    Csonka, Szabolcs
    Tovari, Endre
    NPJ QUANTUM MATERIALS, 2024, 9 (01)
  • [5] Nonlinear electrical transport phenomena as fingerprints of a topological phase transition in ZrTe5
    Salawu, Yusuff Adeyemi
    Adhikari, Dilanath
    Kim, Jin Hee
    Rhyee, Jong-Soo
    Sasaki, Minoru
    Kim, Ki-Seok
    Kim, Heon-Jung
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [6] Time-dependent strain-tuned topological magnon phase transition
    Vidal-Silva, Nicolas
    Troncoso, Roberto E.
    PHYSICAL REVIEW B, 2022, 106 (22)
  • [7] Nonlinear electrical transport phenomena as fingerprints of a topological phase transition in ZrTe5
    Yusuff Adeyemi Salawu
    Dilanath Adhikari
    Jin Hee Kim
    Jong-Soo Rhyee
    Minoru Sasaki
    Ki-Seok Kim
    Heon-Jung Kim
    Communications Materials, 4
  • [8] Magneto-transport evidence for strong topological insulator phase in ZrTe5
    Jingyue Wang
    Yuxuan Jiang
    Tianhao Zhao
    Zhiling Dun
    Anna L. Miettinen
    Xiaosong Wu
    Martin Mourigal
    Haidong Zhou
    Wei Pan
    Dmitry Smirnov
    Zhigang Jiang
    Nature Communications, 12
  • [9] Magneto-transport evidence for strong topological insulator phase in ZrTe5
    Wang, Jingyue
    Jiang, Yuxuan
    Zhao, Tianhao
    Dun, Zhiling
    Miettinen, Anna L.
    Wu, Xiaosong
    Mourigal, Martin
    Zhou, Haidong
    Pan, Wei
    Smirnov, Dmitry
    Jiang, Zhigang
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
    Tajkov, Zoltan
    Nagy, Daniel
    Kandrai, Konrad
    Koltai, Janos
    Oroszlany, Laszlo
    Sule, Peter
    Horvath, Zsolt E.
    Vancso, Peter
    Tapaszto, Levente
    Nemes-Incze, Peter
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)