Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network

被引:69
作者
Pei, Shaoqian [1 ]
Qin, Hui [1 ]
Zhang, Zhendong [1 ]
Yao, Liqiang [2 ]
Wang, Yongqiang [2 ]
Wang, Chao [3 ]
Liu, Yongqi [1 ]
Jiang, Zhiqiang [1 ]
Zhou, Jianzhong [1 ]
Yi, Tailai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China
[2] Changjiang Water Resources Commiss, Changjiang River Sci Res Inst, Wuhan, Hubei, Peoples R China
[3] China Inst Water Resources & Hydropower Res, Dept Water Resources, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Wind speed prediction; Empirical Wavelet Transform; Long Short-Term Memory network; New Cell Update; NUMERICAL WEATHER PREDICTION; EXTREME LEARNING-MACHINE; MODE DECOMPOSITION; NEURAL-NETWORK; MULTISTEP;
D O I
10.1016/j.enconman.2019.06.041
中图分类号
O414.1 [热力学];
学科分类号
摘要
Obtaining accurate wind speed forecast result plays a decisive role in ensuring the reliable operation of the power system integrated with large-scale wind power. Deep learning methods are increasingly being used to predict wind speed, which have relatively high prediction accuracy but more time-consuming training processes. The purposes of this study are further to improve the prediction accuracy of the wind speed and reduce the training time of the deep learning method. In this paper, a novel hybrid model, New Cell Update Long Short-Term Memory combined with Empirical Wavelet Transform, is proposed to increase the prediction accuracy in shorter training time. At first, the original wind speed sequence is preprocessed into a series of sub-sequence by the empirical wavelet decomposition. Then each sub-sequence is trained by New Cell Update Long Short-Term Memory which is proposed by this paper respectively and the sum of each sub-sequence is treated as the final prediction results. In order to verify the performance of the proposed model, different decomposition methods and different prediction methods are compared on the four actual wind speed prediction cases in the Inner Mongolia, China from prediction accuracy and training time. The results demonstrate that: (1) New Cell Update Long Short-Term Memory network has slightly higher prediction accuracy and shorter training time than Long Short-Term Memory network. (2) The prediction accuracy of the model is significantly improved after empirical wavelet decomposition. Therefore, New Cell Update Long Short-Term Memory network combined with empirical wavelet decomposition is a competitive wind speed prediction method compared to the existing state-ofthe-art approach.
引用
收藏
页码:779 / 792
页数:14
相关论文
共 36 条
[1]   A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data [J].
Allen, D. J. ;
Tomlin, A. S. ;
Bale, C. S. E. ;
Skea, A. ;
Vosper, S. ;
Gallani, M. L. .
APPLIED ENERGY, 2017, 208 :1246-1257
[2]   Long-term wind speed and power forecasting using local recurrent neural network models [J].
Barbounis, TG ;
Theocharis, JB ;
Alexiadis, MC ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (01) :273-284
[3]   Multiple architecture system for wind speed prediction [J].
Bouzgou, Hassen ;
Benoudjit, Nabil .
APPLIED ENERGY, 2011, 88 (07) :2463-2471
[4]  
Carpinone A, 2010, VERY SHORT TERM PROB, P107
[5]   Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction [J].
Chen, Niya ;
Qian, Zheng ;
Nabney, Ian T. ;
Meng, Xiaofeng .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (02) :656-665
[6]  
Cho K, 2014, MACH TRANSL
[7]   ARMA based approaches for forecasting the tuple of wind speed and direction [J].
Erdem, Ergin ;
Shi, Jing .
APPLIED ENERGY, 2011, 88 (04) :1405-1414
[8]   Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM [J].
Fu, Wenlong ;
Wang, Kai ;
Li, Chaoshun ;
Tan, Jiawen .
ENERGY CONVERSION AND MANAGEMENT, 2019, 187 :356-377
[9]   A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy [J].
Fu, Wenlong ;
Wang, Kai ;
Zhou, Jianzhong ;
Xu, Yanhe ;
Tan, Jiawen ;
Chen, Tie .
SUSTAINABILITY, 2019, 11 (06)
[10]   Learning to forget: Continual prediction with LSTM [J].
Gers, FA ;
Schmidhuber, J ;
Cummins, F .
NEURAL COMPUTATION, 2000, 12 (10) :2451-2471