Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system

被引:12
作者
Li, Bo [1 ]
Wang, Fangfang [1 ]
Zhang, Xiaoyan [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Sel'kov-Schnakenberg reaction-diffusion system; Turing pattern; Nonconstant steady state a priori estimates; Existence; Nonexistence; STEADY-STATE SOLUTIONS; LENGYEL-EPSTEIN SYSTEM; HARRISON REACTION SCHEME; PATTERN-FORMATION; TURING PATTERNS; CHEMICAL OSCILLATIONS; QUALITATIVE-ANALYSIS; BIFURCATION ANALYSIS; MODEL; GLYCOLYSIS;
D O I
10.1016/j.nonrwa.2018.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a generalized Sel'kov-Schnakenberg reaction-diffusion system. Criteria for the stability and instability of the unique constant steady state solution are given. Various conditions on the existence and nonexistence of nonconstant steady state solutions are established. In particular, it is proved that the system admits no nonconstant steady state solution provided that d(2) is large enough and 0 < p <= 1, while it has nonconstant steady state solution if d(2) is large enough and p > 1. This implies, when d(2) is large enough, the index p = 1 is the critical value of generating spatial pattern (especially, Turing pattern). Our main results essentially improve those in previous works. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:537 / 558
页数:22
相关论文
共 40 条
  • [1] On the global asymptotic stability of solutions to a generalised Lengyel-Epstein system
    Abdelmalek, Salem
    Bendoukha, Samir
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 397 - 413
  • [2] [Anonymous], 1994, Chemical waves and patterns
  • [3] [Anonymous], 1998, Not. Am. Math. Soc.
  • [4] BIFURCATION ANALYSIS OF REACTION-DIFFUSION EQUATIONS .3. CHEMICAL OSCILLATIONS
    AUCHMUTY, JFG
    NICOLIS, G
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1976, 38 (04) : 325 - 350
  • [5] AUCHMUTY JFG, 1975, B MATH BIOL, V37, P323, DOI 10.1007/BF02459519
  • [6] Davidson FA, 2000, P ROY SOC EDINB A, V130, P507
  • [7] Du ZJ, 2016, J MATH BIOL, V72, P1429, DOI 10.1007/s00285-015-0914-z
  • [8] Non-constant steady-state solutions for Brusselator type systems
    Ghergu, Marius
    [J]. NONLINEARITY, 2008, 21 (10) : 2331 - 2345
  • [9] Henry D., 1981, Geometric theory of semilinear parabolic equations
  • [10] BIFURCATIONS OF PATTERNED SOLUTIONS IN THE DIFFUSIVE LENGYEL-EPSTEIN SYSTEM OF CIMA CHEMICAL REACTIONS
    Jin, Jiayin
    Shi, Junping
    Wei, Junjie
    Yi, Fengqi
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1637 - 1674