Traveling Pulse Solutions in a Three-Component FitzHugh-Nagumo Model

被引:5
作者
Teramoto, Takashi [1 ]
van Heijster, Peter [2 ,3 ]
机构
[1] Asahikawa Med Univ, Sch Med, Asahikawa, Hokkaido 0788510, Japan
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Wageningen Univ & Res, Biometris, NL-6700 AA Wageningen, Netherlands
基金
澳大利亚研究理事会;
关键词
reaction-diffusion systems; action functional; singular limit; existence; saddle-node bifurcation; DISSIPATIVE SOLITONS; LOCALIZED STRUCTURES; STABILITY ANALYSIS; DYNAMICS; SYSTEM; BIFURCATIONS; SPOTS; PATTERNS;
D O I
10.1137/20M1334942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh-Nagumo model. First, we derive the profile of traveling 1-pulse solutions with undetermined width and propagating speed. Next, we compute the associated action functional for this profile from which we derive the conditions for existence and a saddle-node bifurcation as the zeros of the action functional and its derivatives. We obtain the same conditions by using a different analytical approach that exploits the singular limit of the problem. We also apply this methodology of the action functional to the problem for traveling 2-pulse solutions and derive the explicit conditions for existence and a saddle-node bifurcation. From these we deduce a necessary condition for the existence of traveling 2-pulse solutions. We end this article with a discussion related to Hopf bifurcations near the saddle-node bifurcation.
引用
收藏
页码:371 / 402
页数:32
相关论文
共 36 条
[1]   Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system [J].
Bode, M ;
Liehr, AW ;
Schenk, CP ;
Purwins, HG .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 161 (1-2) :45-66
[2]  
Chen C.N., 2018, ARXIV180701832
[3]   The Γ-limit of traveling waves in the FitzHugh-Nagumo system [J].
Chen, Chao-Nien ;
Choi, Yung Sze ;
Fusco, Nicola .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) :1805-1835
[4]   Traveling pulse solutions to FitzHugh-Nagumo equations [J].
Chen, Chao-Nien ;
Choi, Y. S. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :1-45
[5]   A variational approach for standing waves of FitzHugh-Nagumo type systems [J].
Chen, Chao-Nien ;
Tanaka, Kazunaga .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (01) :109-144
[6]   Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations [J].
Chen, Chao-Nien ;
Hu, Xijun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :827-845
[7]   Standing Pulse Solutions to FitzHugh-Nagumo Equations [J].
Chen, Chao-Nien ;
Choi, Y. S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :741-777
[8]   Unfolding Symmetric Bogdanov-Takens Bifurcations for Front Dynamics in a Reaction-Diffusion System [J].
Chirilus-Bruckner, Martina ;
van Heijster, Peter ;
Ikeda, Hideo ;
Rademacher, Jens D. M. .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (06) :2911-2953
[9]   Butterfly Catastrophe for Fronts in a Three-Component Reaction-Diffusion System [J].
Chirilus-Bruckner, Martina ;
Doelman, Arjen ;
van Heijster, Peter ;
Rademacher, Jens D. M. .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (01) :87-129
[10]   A steepest descent algorithm for the computation of traveling dissipative solitons [J].
Choi, Y. S. ;
Connors, J. M. .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2020, 37 (01) :131-163