On the Morse critical groups for indefinite sublinear elliptic problems

被引:16
作者
Moroz, V [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
sublinear elliptic equations; indefinite weights; nontrivial solutions; bifurcation; Morse theory; Morse critical groups;
D O I
10.1016/S0362-546X(02)00174-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet problem for the equation -Deltau = alphau + m(x)u\u\(q-2) + g(x, u), where q is an element of (1, 2) and m changes sign. We prove that the Morse critical groups at zero of the energy functional of the problem are trivial. As a consequence, existence and bifurcation of nontrivial solutions of the problem are established. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1441 / 1453
页数:13
相关论文
共 23 条
[1]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[2]   Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking [J].
Alama, S ;
DelPino, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (01) :95-115
[3]  
Alama S., 1999, Adv. Differential Equations, V4, P813
[4]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[5]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[6]   THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (02) :487-501
[7]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[8]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal, V7, P115
[9]  
Chang K.-C., 1996, Topol. Methods Nonlinear Anal., V7, P77
[10]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8