A fixed-point theorem for monotone nearly asymptotically nonexpansive mappings

被引:9
作者
Aggarwal, Sajan [1 ]
Uddin, Izhar [1 ]
Nieto, Juan J. [2 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[2] Univ Santiago de Compostela, Inst Matemat, Dept Estat Analise Matemat & Optimizac, Santiago De Compostela 15782, Spain
关键词
Hyperbolic metric space; nearly asymptotically nonexpansive mapping; fixed-point theorem; PARTIALLY ORDERED SETS; METRIC-SPACES; ITERATIONS;
D O I
10.1007/s11784-019-0728-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence and convergence of fixed point for monotone nearly asymptotically nonexpansive mapping in hyperbolic metric space. Thus, several results are generalized and improved, in particular those are contained in Alfuraidan and Khamsi (Proc. Am. Math. Soc. 146(2018):2451-2456, 2018).
引用
收藏
页数:11
相关论文
共 25 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]   FIXED POINT THEOREM FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
Alfuraidan, Monther Rashed ;
Khamsi, Mohamed Amine .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) :2451-2456
[3]  
Bachar M, 2018, J NONLINEAR CONVEX A, V19, P987
[4]   Fixed points of monotone mappings and application to integral equations [J].
Bachar, Mostafa ;
Khamsi, Mohamed Amine .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[5]  
Banach S., 1922, Fund. Maths., V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[6]  
BIN DEHAISH B.A., 2016, Fixed Point Theory Appl., V20, P1
[7]   Mann iteration process for monotone nonexpansive mappings [J].
Bin Dehaish, Buthinah Abdullatif ;
Khamsi, Mohamed Amine .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[9]  
Goebel K., 1984, Uniform convexity, hyperbolic geometry, and nonexpansive mappings
[10]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&