Cost function dependent barren plateaus in shallow parametrized quantum circuits

被引:658
作者
Cerezo, M. [1 ,2 ]
Sone, Akira [1 ,2 ]
Volkoff, Tyler [1 ]
Cincio, Lukasz [1 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA
关键词
D O I
10.1038/s41467-021-21728-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Variational quantum algorithms (VQAs) optimize the parameters theta of a parametrized quantum circuit V(theta) to minimize a cost function C. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming V(theta) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining C in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when V(theta) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining C with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of V(theta) is O(logn). Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation. Parametrised quantum circuits are a promising hybrid classical-quantum approach, but rigorous results on their effective capabilities are rare. Here, the authors explore the feasibility of training depending on the type of cost functions, showing that local ones are less prone to the barren plateau problem.
引用
收藏
页数:12
相关论文
共 59 条
[31]   Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J].
Kandala, Abhinav ;
Mezzacapo, Antonio ;
Temme, Kristan ;
Takita, Maika ;
Brink, Markus ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2017, 549 (7671) :242-246
[32]   Quantum-assisted quantum compiling [J].
Khatri, Sumeet ;
LaRose, Ryan ;
Poremba, Alexander ;
Cincio, Lukasz ;
SoRnborger, Andrew T. ;
Coles, Patrick J. .
QUANTUM, 2019, 3
[33]   Variational-state quantum metrology [J].
Koczor, Balint ;
Endo, Suguru ;
Jones, Tyson ;
Matsuzaki, Yuichiro ;
Benjamin, Simon C. .
NEW JOURNAL OF PHYSICS, 2020, 22 (08)
[34]   An Adaptive Optimizer for Measurement-Frugal Variational Algorithms [J].
Kuebler, Jonas M. ;
Arrasmith, Andrew ;
Cincio, Lukasz ;
Coles, Patrick J. .
QUANTUM, 2020, 4
[35]   Quantum autoencoders via quantum adders with genetic algorithms [J].
Lamata, L. ;
Alvarez-Rodriguez, U. ;
Martin-Guerrero, J. D. ;
Sanz, M. ;
Solano, E. .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (01)
[36]   Variational quantum state diagonalization [J].
LaRose, Ryan ;
Tikku, Arkin ;
O'Neel-Judy, Etude ;
Cincio, Lukasz ;
Coles, Patrick J. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[37]   Generalized Unitary Coupled Cluster Wave functions for Quantum Computation [J].
Lee, Joonho ;
Huggins, William J. ;
Head-Gordon, Martin ;
Whaley, K. Birgitta .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (01) :311-324
[38]   Efficient Variational Quantum Simulator Incorporating Active Error Minimization [J].
Li, Ying ;
Benjamin, Simon C. .
PHYSICAL REVIEW X, 2017, 7 (02)
[39]   Barren plateaus in quantum neural network training landscapes [J].
McClean, Jarrod R. ;
Boixo, Sergio ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Neven, Hartmut .
NATURE COMMUNICATIONS, 2018, 9
[40]   The theory of variational hybrid quantum-classical algorithms [J].
McClean, Jarrod R. ;
Romero, Jonathan ;
Babbush, Ryan ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18