On the existence and the uniqueness of the solution to a fluid-structure interaction problem

被引:7
作者
Boffi, Daniele [1 ,2 ]
Gastaldi, Lucia [3 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] Univ Pavia, Pavia, Italy
[3] Univ Brescia, DICATAM, Brescia, Italy
关键词
D O I
10.1016/j.jde.2021.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the linearized version of a system of partial differential equations arising from a fluid-structure interaction model. We prove the existence and the uniqueness of the solution under natural regularity assumptions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 161
页数:26
相关论文
共 42 条
[1]  
Adams R. A., 2003, Pure and Applied Mathematics (Amsterdam), V140
[2]   A finite element approach for the immersed boundary method [J].
Boffi, D ;
Gastaldi, L .
COMPUTERS & STRUCTURES, 2003, 81 (8-11) :491-501
[3]  
Boffi D., 2013, SPRINGER SERIES COMP, V44
[4]   On the hyper-elastic formulation of the immersed boundary method [J].
Boffi, Daniele ;
Gastaldi, Lucia ;
Heltai, Luca ;
Peskin, Charles S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (25-28) :2210-2231
[5]   A fictitious domain approach with Lagrange multiplier for fluid-structure interactions [J].
Boffi, Daniele ;
Gastaldi, Lucia .
NUMERISCHE MATHEMATIK, 2017, 135 (03) :711-732
[6]   THE FINITE ELEMENT IMMERSED BOUNDARY METHOD WITH DISTRIBUTED LAGRANGE MULTIPLIER [J].
Boffi, Daniele ;
Cavallini, Nicola ;
Gastaldi, Lucia .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (06) :2584-2604
[7]   FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES [J].
Boffi, Daniele ;
Cavallini, Nicola ;
Gastaldi, Lucia .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (12) :2523-2550
[8]  
Boulakia M, 2017, ADV DIFFERENTIAL EQU, V22, P1
[9]   Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure [J].
Boulakia, Muriel ;
Guerrero, Sergio ;
Takahashi, Takeo .
NONLINEARITY, 2019, 32 (10) :3548-3592
[10]   Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate [J].
Chambolle, A ;
Desjardins, B ;
Esteban, MJ ;
Grandmont, C .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :368-404