Centroaffine Minimal Surfaces with Non-Semisimple Centroaffine Tchebychev Operator

被引:8
作者
Fujioka, Atsushi [1 ]
机构
[1] Hitotsubashi Univ, Grad Sch Econ, Tokyo 1868601, Japan
基金
日本学术振兴会;
关键词
Centroaffine minimal surfaces; centroaffine Tchebychev operator; center map; CONGRUENT CENTER MAP; AFFINE; HYPERSURFACES;
D O I
10.1007/s00025-009-0427-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study centroaffine minimal surfaces with non-semisimple centroaffine Tchebychev operator and classify such surfaces with constant centroaffine curvature. We also study the center map of such surfaces and show that it becomes a centroaffine surface if and only if the centroaffine curvature is not equal to 1.
引用
收藏
页码:177 / 195
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1991, DIFFER GEOM APPL
[2]  
Binder T., 1999, Geometry and topology of submanifolds, VIX, P27
[3]  
FUJIOKA A, CENTROAFFINE MINIMAL
[4]  
Fujioka A, 2006, KYUNGPOOK MATH J, V46, P297
[5]  
Furuhata H., 2006, RESULTS MATH, V49, P201
[6]  
Katou M., 2006, INTERDISCIP INFORM S, V12, P53
[7]  
Liu H., 1995, RESULTS MATH, V27, P77, DOI DOI 10.1007/BF03322271
[8]   Indefinite centroaffine surfaces with vanishing generalized Pick function [J].
Liu, Huili ;
Dal Jung, Seoung .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :712-720
[9]  
MAGID MA, 1990, GEOMETRIAE DEDICATA, V33, P277
[10]  
Nomizu K., 1994, CAMBRIDGE TRACTS MAT, V111