MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES

被引:32
|
作者
Chen, Wenbin [1 ]
Wang, Yanqiu [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
H(curl); H(div); mixed finite element; finite element exterior calculus; generalized barycentric coordinates; EXTERIOR CALCULUS; CONSTRUCTION; APPROXIMATION; INTERPOLATION; SPACES; FORMS;
D O I
10.1090/mcom/3152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
引用
收藏
页码:2053 / 2087
页数:35
相关论文
共 44 条
  • [31] Hierarchical Universal Matrices for Curvilinear Tetrahedral H(curl) Finite Elements With Inhomogeneous Material Properties
    Toth, Laszlo Levente
    Amor-Martin, Adrian
    Dyczij-Edlinger, Romanus
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (01) : 89 - 99
  • [32] H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
    Bonizzoni, Francesca
    Kanschat, Guido
    CALCOLO, 2021, 58 (02)
  • [33] Two and three dimensional H2 2-conforming finite element approximations without C 1-elements
    Ainsworth, Mark
    Parker, Charles
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 431
  • [34] Interpolation-operator orthogonal, hierarchical H1-conforming basis functions for tetrahedral finite elements
    Toth, Laszlo Levente
    Schuck, Lukas David
    Dyczij-Edlinger, Romanus
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 421 - 425
  • [35] Solving two-dimensional H(curl)-elliptic interface systems with optimal convergence on unfitted meshes
    Guo, Ruchi
    Lin, Yanping
    Zou, Jun
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2023, 34 (04) : 774 - 805
  • [36] H(div)-conforming and discontinuous Galerkin approach for Herschel-Bulkley flow with density-dependent viscosity and yield stress
    Gonzalez-Andrade, Sergio
    Silva, Paul E. Mendez
    APPLICATIONS IN ENGINEERING SCIENCE, 2024, 19
  • [37] A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(div) ELEMENTS FOR THE STOKES EQUATIONS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (01) : 131 - 152
  • [38] A MIXED H1-CONFORMING FINITE ELEMENT METHOD FOR SOLVING MAXWELL'S EQUATIONS WITH NON-H1 SOLUTION
    Duan, Huo-Yuan
    Tan, Roger C. E.
    Yang, Suh-Yuh
    You, Cheng-Shu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) : A224 - A250
  • [39] Hierarchical high order finite element spaces in H(div, Ω) x H1(Ω) fora stabilized mixed formulation of Darcy problem
    Correa, Maicon R.
    Rodriguez, Juan C.
    Farias, Agnaldo M.
    de Siqueira, Denise
    Devloo, Philippe R. B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1117 - 1141
  • [40] CONVERGENCE ANALYSIS OF NITSCHE EXTENDED FINITE ELEMENT METHODS FOR H(CURL)-ELLIPTIC INTERFACE PROBLEMS
    Wang, Nan
    Chen, Jinru
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 487 - 510