MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES

被引:32
|
作者
Chen, Wenbin [1 ]
Wang, Yanqiu [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
H(curl); H(div); mixed finite element; finite element exterior calculus; generalized barycentric coordinates; EXTERIOR CALCULUS; CONSTRUCTION; APPROXIMATION; INTERPOLATION; SPACES; FORMS;
D O I
10.1090/mcom/3152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
引用
收藏
页码:2053 / 2087
页数:35
相关论文
共 44 条
  • [21] Bernstein-Bézier H(curl)-Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems
    Benatia, Nawfel
    El Kacimi, Abdellah
    Laghrouche, Omar
    Ratnani, Ahmed
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [22] Convergence of high order curl-conforming finite elements
    Geuzaine, C
    Meys, B
    Dular, P
    Legros, W
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1442 - 1445
  • [23] A global H(div)-conforming finite element post-processing for stress recovery in nearly incompressible elasticity
    Taraschi, G.
    Correa, M. R.
    Pinto, A. S.
    Faria, C. O.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [24] On the Construction of Well-Conditioned Hierarchical Bases for H(div)-Conforming Rn Simplicial Elements
    Xin, Jianguo
    Cai, Wei
    Guo, Nailong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (03) : 621 - 638
  • [25] Inverted finite elements for div-curl systems in the whole space
    Boulmezaoud, Tahar Z.
    Kaliche, Keltoum
    Kerdid, Nabil
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (06) : 1469 - 1489
  • [26] A NEW H(div)-CONFORMING p-INTERPOLATION OPERATOR IN TWO DIMENSIONS
    Bespalov, Alexei
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (02): : 255 - 275
  • [27] Preconditioning high order H2 conforming finite elements on triangles
    Ainsworth, Mark
    Parker, Charles
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 223 - 254
  • [28] A Div FOSLS Method Suitable for Quadrilateral RT and Hexahedral RTN H(div)-elements
    Duan, Huoyuan
    Wang, Can
    Du, Zhijie
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (03)
  • [29] H(div) finite elements based on nonaffine meshes for 3D mixed formulations of flow problems with arbitrary high order accuracy of the divergence of the flux
    Remy Bernard Devloo, Philippe
    Duran, Omar
    Monteiro Farias, Agnaldo
    Maria Gomes, Sonia
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (13) : 2896 - 2915
  • [30] Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations
    Fu, Guosheng
    Jin, Yanyi
    Qiu, Weifeng
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 957 - 982