MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES
被引:32
|
作者:
Chen, Wenbin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
Chen, Wenbin
[1
]
Wang, Yanqiu
论文数: 0引用数: 0
h-index: 0
机构:
Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
Wang, Yanqiu
[2
,3
]
机构:
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74074 USA
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial Nedelec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.
机构:
Univ Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, 45 Ave Etats Unis, F-78035 Versailles, FranceUniv Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, 45 Ave Etats Unis, F-78035 Versailles, France
Boulmezaoud, Tahar Z.
Kaliche, Keltoum
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, 45 Ave Etats Unis, F-78035 Versailles, FranceUniv Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, 45 Ave Etats Unis, F-78035 Versailles, France
Kaliche, Keltoum
Kerdid, Nabil
论文数: 0引用数: 0
h-index: 0
机构:
Al Imam Bin Saud Univ, Dept Math & Stat, Coll Sci, POB 90950, Riyadh 11623, Saudi ArabiaUniv Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, 45 Ave Etats Unis, F-78035 Versailles, France
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Duan, Huoyuan
Wang, Can
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Wang, Can
Du, Zhijie
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China