The depth of continued fraction expansion for some classes of rational functions

被引:1
作者
Tongron, Yanapat [1 ]
Kanasri, Narakorn Rompurk [1 ]
Laohakosol, Vichian [2 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Kasetsart Univ, Fac Sci, Dept Math, Bangkok 10900, Thailand
关键词
Euclidean algorithm; polynomial; rational function; continued fraction; upper bound; LENGTH;
D O I
10.1142/S1793557121500339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For nonzero polynomials f and g over a field K, let L(f/g) be the depth (length) of the continued fraction expansion for f/g. An upper bound on L(fX), for nonzero polynomial f and rational function X is obtained. Applying this result, an upper bound on the depth of a linear fractional transformation is also established.
引用
收藏
页数:13
相关论文
共 12 条
[1]  
CHOQUET G, 1980, CR ACAD SCI A MATH, V290, P575
[2]  
Driss S., 2015, DISCUSS MATH GEN ALG, V35, P131
[3]  
France M. Mend`es, 1974, SEM DELANGE PISOT PO, V16, P1
[4]  
France M. Mend`es, 1974, C MATH SOC J BOLYAI, V13, P183
[5]  
France M. Mend`es, 1971, SEM DELANGE PISOT PO, V13, P1
[6]  
France Michel Mendes, 1993, Enseign. Math., V39, P249
[7]   Length of the powers of a rational fraction [J].
Grisel, G .
JOURNAL OF NUMBER THEORY, 1997, 62 (02) :322-337
[8]   THE LENGTH OF THE CONTINUED-FRACTION EXPANSION FOR A CLASS OF RATIONAL FUNCTIONS IN FQ(X) [J].
KNOPFMACHER, A .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1991, 34 :7-17
[9]   THE EXACT LENGTH OF THE EUCLIDEAN ALGORITHM IN FQ[X] [J].
KNOPFMACHER, A ;
KNOPFMACHER, J .
MATHEMATIKA, 1988, 35 (70) :297-304
[10]  
Mendes France M., 1973, ACTA ARITH, V23, P207, DOI DOI 10.4064/AA-23-2-207-215