Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus

被引:32
作者
Rawson, RB [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Mol Genet, Dallas, TX 75390 USA
来源
PROTEASES IN BIOLOGY AND MEDICINE | 2002年 / 38卷
关键词
D O I
10.1042/bse0380155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Regulated intramembrane proteolysis (Rip) is an ancient and widespread process by which cells transmit information from one compartment (the endoplasmic reticulum) to another (the nucleus). Two separate cleavages that are carried out by two separate proteases are required for Rip. The first protease cleaves its protein substrate within an extracytoplasmic domain; the second cleaves it within a membrane-spanning domain, releasing a functionally active fragment of the target protein. In eukaryotes, examples of Rip can be divided into two classes, according to the proteases that are involved and the orientation of the substrates with the membrane. Class 1 Rip involves type 1 transmembrane proteins and requires presenilin for cleavage within a membrane-spanning domain. In Class 2 Rip, the highly hydrophobic metalloprotease, site-2 protease, is required for cleavage within a membrane-spanning domain and substrates are type 2 transmembrane proteins. Both classes of Rip are implicated in diseases that are important in modern societies, such as hyperlipidaemias (via the sterol regulatory element binding protein pathway) and Alzheimer's disease (via processing of the amyloid precursor protein.).
引用
收藏
页码:155 / 168
页数:14
相关论文
共 31 条
[1]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[2]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[3]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[4]   Cleavage site for sterol-regulated protease localized to a Leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2 [J].
Duncan, EA ;
Brown, MS ;
Goldstein, JL ;
Sakai, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12778-12785
[5]   Biomedicine - A portrait of Alzheimer secretases - New features and familiar faces [J].
Esler, WP ;
Wolfe, MS .
SCIENCE, 2001, 293 (5534) :1449-1454
[6]   Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins [J].
Espenshade, PJ ;
Cheng, D ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22795-22804
[7]   NF-κB and rel proteins:: Evolutionarily conserved mediators of immune responses [J].
Ghosh, S ;
May, MJ ;
Kopp, EB .
ANNUAL REVIEW OF IMMUNOLOGY, 1998, 16 :225-260
[8]   Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress [J].
Haze, K ;
Yoshida, H ;
Yanagi, H ;
Yura, T ;
Mori, K .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (11) :3787-3799
[9]   Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response [J].
Haze, K ;
Okada, T ;
Yoshida, H ;
Yanagi, H ;
Yura, T ;
Negishi, M ;
Mori, K .
BIOCHEMICAL JOURNAL, 2001, 355 :19-28
[10]  
Hoppe T, 2000, CELL, V102, P577, DOI 10.1016/S0092-8674(00)00080-5