Quadratic Lienard equations with quadratic damping

被引:59
作者
Dumortier, F
Li, CZ
机构
[1] BEIJING UNIV,DEPT MATH,BEIJING 100871,PEOPLES R CHINA
[2] BEIJING UNIV,MATH INST,BEIJING 100871,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jdeq.1997.3291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the generalized Lienard equations (x) double over dot + f(x) (x) overdot + g(x) = 0 with quadratic polynomials f and g. We prove that these kind of equations can have at most one limit cycle, and we give the complete bifurcation diagram and classification of the phase portraits. The paper also contains a shorter proof for the result in A. Lins, W. de Meio, and C. C. Pugh, 1977, Lecture Notes in Math. 597, 335-357 on the unicity of the limit cycle for (standard) Lienard equations with quadratic damping. (C) 1997 Academic Press.
引用
收藏
页码:41 / 59
页数:19
相关论文
共 12 条
[1]  
CHZHAN CF, 1958, DOKL AKAD NAUK SSSR, V119, P659
[2]  
Coppel WA., 1988, Dyn. Rep, V2, P61
[3]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[4]   On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations [J].
Dumortier, F ;
Li, CZ .
NONLINEARITY, 1996, 9 (06) :1489-1500
[5]  
DUMORTIER F, STUD MATH PHYS, V2, P161
[6]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[7]  
Lins A., 1977, LECT NOTES MATH, V597, P335
[8]   SMALL-AMPLITUDE LIMIT-CYCLES OF CERTAIN LIENARD SYSTEMS [J].
LLOYD, NG ;
LYNCH, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854) :199-208
[9]   ROTATED VECTOR FIELDS AND GLOBAL BEHAVIOR OF LIMIT CYCLES FOR A CLASS OF QUADRATIC SYSTEMS IN PLANE [J].
PERKO, LM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 18 (01) :63-86
[10]  
ZENG XW, 1982, SCI SIN A-MATH P A T, V25, P583