Nodal Solutions for a Singularly Perturbed Nonlinear Elliptic Problem on Riemannian Manifolds

被引:0
作者
Micheletti, Anna Maria [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Met & Modelli Matemat, I-00161 Rome, Italy
关键词
concentrating solutions; nodal solutions; scalar curvature; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; MULTIPEAK SOLUTIONS; PEAK SOLUTIONS; EQUATION; MULTIPLICITY; CURVATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a smooth compact, Riemannian N-manifold, N >= 2. We show that if the scalar curvature of g is not constant, the problem -epsilon(2)Delta(g)u + u = u(p-1) in M has a positive solution with two positive peaks xi(epsilon)(1) and xi(epsilon)(2) and a sign changing solution with one positive peak eta(epsilon)(1) and one negative peak eta(epsilon)(2), such that as epsilon goes to zero Scal(g)(xi(epsilon)(1)), Scal(g)(eta(epsilon)(1)) -> min(epsilon is an element of M) Scal(g)(xi) and Scal(g)(xi(epsilon)(2)), Scal(g)(eta(epsilon)(2)) -> max(epsilon is an element of M) Scal(g)(xi). Here p > 2 if N = 2 and 2 < p < 2* = 2N/N-2 if N >= 3.
引用
收藏
页码:565 / 577
页数:13
相关论文
共 22 条
[1]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[2]   On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds [J].
Benci, Vieri ;
Bonanno, Claudio ;
Micheletti, Anna Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) :464-489
[3]   Singularly perturbed nonlinear elliptic problems on manifolds [J].
Byeon, J ;
Park, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (04) :459-477
[4]   Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds [J].
Dancer, E. N. ;
Micheletti, A. M. ;
Pistoia, A. .
MANUSCRIPTA MATHEMATICA, 2009, 128 (02) :163-193
[5]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[6]   On the role of mean curvature in some singularly perturbed Neumann problems [J].
Del Pino, M ;
Felmer, PL ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :63-79
[7]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[8]  
GHIMENTI M, 1977, ELECT J DIF IN PRESS
[9]   Multiple boundary peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC ;
Winter, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :47-82
[10]   Multipeak solutions for a semilinear Neumann problem [J].
Gui, CF .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) :739-769