Remote epitaxy through graphene enables two-dimensional material-based layer transfer

被引:482
作者
Kim, Yunjo [1 ]
Cruz, Samuel S. [1 ]
Lee, Kyusang [1 ]
Alawode, Babatunde O. [1 ]
Choi, Chanyeol [1 ]
Song, Yi [2 ]
Johnson, Jared M. [3 ]
Heidelberger, Christopher [4 ]
Kong, Wei [1 ]
Choi, Shinhyun [1 ]
Qiao, Kuan [1 ]
Almansouri, Ibraheem [1 ,5 ]
Fitzgerald, Eugene A. [4 ]
Kong, Jing [2 ,6 ]
Kolpak, Alexie M. [1 ]
Hwang, Jinwoo [3 ]
Kim, Jeehwan [1 ,4 ,6 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Masdar Inst Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi 54224, U Arab Emirates
[6] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SUBSTRATE SURFACE RECONSTRUCTION; DER-WAALS EPITAXY; GROWTH; TRANSITION; FILMS; FE;
D O I
10.1038/nature22053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epitaxy-the growth of a crystalline material on a substrate-is crucial for the semiconductor industry, but is often limited by the need for lattice matching between the two material systems. This strict requirement is relaxed for van der Waals epitaxy(1-10), in which epitaxy on layered or two-dimensional (2D) materials is mediated by weak van der Waals interactions, and which also allows facile layer release from 2D surfaces(3,8). It has been thought that 2D materials are the only seed layers for van der Waals epitaxy(3-10). However, the substrates below 2D materials may still interact with the layers grown during epitaxy (epilayers), as in the case of the so-called wetting transparency documented for graphene(11-13). Here we show that the weak van der Waals potential of graphene cannot completely screen the stronger potential field of many substrates, which enables epitaxial growth to occur despite its presence. We use density functional theory calculations to establish that adatoms will experience remote epitaxial registry with a substrate through a substrate-epilayer gap of up to nine angstroms; this gap can accommodate a monolayer of graphene. We confirm the predictions with homoepitaxial growth of GaAs(001) on GaAs(001) substrates through monolayer graphene, and show that the approach is also applicable to InP and GaP. The grown single-crystalline films are rapidly released from the graphene-coated substrate and perform as well as conventionally prepared films when incorporated in light-emitting devices. This technique enables any type of semiconductor film to be copied from underlying substrates through 2D materials, and then the resultant epilayer to be rapidly released and transferred to a substrate of interest. This process is particularly attractive in the context of non-silicon electronics and photonics, where the ability to re-use the graphene-coated substrates(8) allows savings on the high cost of non-silicon substrates.
引用
收藏
页码:340 / +
页数:12
相关论文
共 27 条
[1]   Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer [J].
Alaskar, Yazeed ;
Arafin, Shamsul ;
Lin, Qiyin ;
Wickramaratne, Darshana ;
McKay, Jeff ;
Norman, Andrew G. ;
Zhang, Zhi ;
Yao, Luchi ;
Ding, Feng ;
Zou, Jin ;
Goorsky, Mark S. ;
Lake, Roger K. ;
Zurbuchen, Mark A. ;
Wang, Kang L. .
JOURNAL OF CRYSTAL GROWTH, 2015, 425 :268-273
[2]   Kerf-Less Removal of Si, Ge, and III-V Layers by Controlled Spalling to Enable Low-Cost PV Technologies [J].
Bedell, Stephen W. ;
Shahrjerdi, Davood ;
Hekmatshoar, Bahman ;
Fogel, Keith ;
Lauro, Paul A. ;
Ott, John A. ;
Sosa, Norma ;
Sadana, Devendra .
IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (02) :141-147
[3]   SURFACE RECONSTRUCTIONS OF GAAS(100) OBSERVED BY SCANNING TUNNELING MICROSCOPY [J].
BIEGELSEN, DK ;
BRINGANS, RD ;
NORTHRUP, JE ;
SWARTZ, LE .
PHYSICAL REVIEW B, 1990, 41 (09) :5701-5706
[4]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[5]   Effect of Water Layer at the SiO2/Graphene Interface on Pentacene Morphology [J].
Chhikara, Manisha ;
Pavlica, Egon ;
Matkovic, Aleksandar ;
Gajic, Rados ;
Bratina, Gvido .
LANGMUIR, 2014, 30 (39) :11681-11688
[6]   Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing [J].
Cho, Jongweon ;
Gao, Li ;
Tian, Jifa ;
Cao, Helin ;
Wu, Wei ;
Yu, Qingkai ;
Yitamben, Esmeralda N. ;
Fisher, Brandon ;
Guest, Jeffrey R. ;
Chen, Yong P. ;
Guisinger, Nathan P. .
ACS NANO, 2011, 5 (05) :3607-3613
[7]   Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices [J].
Chung, Kunook ;
Lee, Chul-Ho ;
Yi, Gyu-Chul .
SCIENCE, 2010, 330 (6004) :655-657
[8]   Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy [J].
Gehring, Pascal ;
Gao, Bo F. ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2012, 12 (10) :5137-5142
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   MOVPE growth of semipolar III-nitride semiconductors on CVD graphene [J].
Gupta, Priti ;
Rahman, A. A. ;
Hatui, Nirupam ;
Gokhale, M. R. ;
Deshmukh, Mandar M. ;
Bhattacharya, Arnab .
JOURNAL OF CRYSTAL GROWTH, 2013, 372 :105-108