This work is concerned with the inverse problem of determining the density of an elastic inclusion from the knowledge of how the inclusion scatters known incident elastic waves. A modified gradient method which is based on domain-integral representations for the elastic wavefield is used for the solution of the inverse problem. The algorithm employed is an extension of the Kleinman-van den Berg method to elasticity, and involves an iterative determination of both the unknown density and the shape of the inclusion. Some numerical experiments are presented. (C) 2000 Elsevier Science B.V. All rights reserved.
机构:
DELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDSDELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDS
KLEINMAN, RE
VANDENBERG, PM
论文数: 0引用数: 0
h-index: 0
机构:
DELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDSDELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDS
机构:
DELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDSDELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDS
KLEINMAN, RE
VANDENBERG, PM
论文数: 0引用数: 0
h-index: 0
机构:
DELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDSDELFT UNIV TECHNOL,FAC ELECT ENGN,ELECTROMAGNET RES LAB,2600 GA DELFT,NETHERLANDS